Physiker weisen Magnetismus im Halbleiter nach

Heutige elektronische Bauteile nutzen ausschließlich die elektrische Ladung von Elektronen. Dabei trägt jedes Elektron als bisher brachliegende Information den so genannten Spin: Es rotiert in die eine oder andere Richtung und wird dadurch zu einem winzigen Magneten.

Diese Information für elektrotechnische Anwendungen zu nutzen ist ein alter Traum der Forschung: Riesige Speicherkapazitäten und viel schnellere Schaltungen sind nur einige der Verheißungen. Kann es aber magnetische Halbleiter bei Raumtemperatur überhaupt geben? Um diese Frage tobt unter Forschern eine hitzige Debatte.

Physiker um Prof. Dr. Hartmut Zabel haben es nun geschafft, einen magnetischen Halbleiter zu erzeugen. Mittels eines aufwendigen, eigens entwickelten Verfahrens können sie den Magnetismus darin nachweisen. Darüber berichten sie in der aktuellen Ausgabe von RUBIN, dem Wissenschaftsmagazin der Ruhr-Universität Bochum.

RUBIN im Internet

Den vollständigen Beitrag mit Bildern finden Sie im Internet unter http://www.rub.de/rubin

Gewünscht: Magnetismus bei Raumtemperatur

Halbleiter sind normalerweise nicht magnetisch. Versuche, sie dauerhaft magnetisch zu machen, gelangen bisher nur bei extrem tiefen Temperaturen – untauglich für technische Anwendungen. Ausgehend von theoretischen Überlegungen wählten die Bochumer Forscher für ihre Studien Titanoxid und Zinkoxid für eine Dotierung mit magnetischen Metallen wie Kobalt aus. In einem Teilchenbeschleuniger wurden die Ionen implantiert. Der so behandelte Halbleiter wurde erhitzt, damit die Ionen die Gitterplätze einzelner Halbleiteratome im Kristallgitter einnehmen und Defekte ausheilen.

Was ist im Halbleiter?

Aber ist der dotierte Halbleiter nun wirklich magnetisch? Und wenn ja: Befinden sich im Kristall auch nicht nur Kobalttröpfchen, die zwar magnetisch sind, aber die Eigenschaften des Halbleiters nicht wesentlich verbessern? Um das herauszufinden, unterzogen die Forscher den Halbleiter einer Reihe komplizierter Tests, für die sie verschiedene Diagnosemethoden zu einer neuen und einzigartigen kombinierten.

ALICE kann hinter die Dinge schauen

In der Messkammer ALICE – so benannt weil sie wie Alice im Wunderland hinter die Dinge schauen kann – werden Untersuchungen mit zirkular polarisierter Röntgenstrahlung (XMCD) mit resonanter magnetischer Röntgenstreuung (XRMS) kombiniert. Die zirkular polarisierten Röntgenstrahlen werden jeweils von Elektronen einer Spin-Richtung bevorzugt absorbiert, so dass man auf deren Anzahl in einer Probe schließen kann. Die Röntgenstreuung erlaubt über die charakteristische Ablenkung von Röntgenstrahlen durch die Atome einer Probe Aussagen über deren genaue Struktur. Mittels der Kombination in ALICE können die Forscher also Aussagen über den Magnetismus an unterschiedlichen Orten in der Probe machen. So stellten sie fest, dass die magnetischen Metallionen tatsächlich wie gewünscht auf einzelnen Gitterplätzen im Halbleiter Platz genommen hatten, und dass ihr Magnetismus stabil geblieben war. Erst durch das Anlegen eines starken äußeren Magnetfelds ließ sich der Magnetismus „kippen“; beim Abschalten des äußeren Magnetfelds begab er sich wieder in den Ursprungszustand zurück. „Es steht jetzt schon fest, dass die Ionenimplantation von Kobalt in Titanoxid oder Zinkoxid erfolgreich zu neuen Halbleitermaterialien führt, die ferromagnetisches Verhalten bei Raumtemperatur und darüber hinaus aufweisen“, stellt Prof. Zabel fest. Die Grundvoraussetzung für weitere Entwicklungen in Richtung von spintronischen Bauelementen ist damit gegeben.

Themen in RUBIN Frühjahr 2008

Den gesamten Beitrag lesen Sie in RUBIN Frühjahr 2008, wo sie folgende Themen finden: Geschichtenvorleser gefragt: Entwicklungspsychologen untersuchen das Potenzial „Familie“ für den Schulerfolg der Kinder; Warum dopen?: Individuelles Training im Rhythmus des Hormonzyklus könnte Sportlerinnen natürliche Leistungssteigerungen bringen; Ferromagnetische Halbleiter: Traum oder Wirklichkeit?; Kein Kabelgewirr und kein Blechschaden mehr: Ingenieure entwerfen integrierten Schaltungen im Gigabit-pro-Sekunde-Bereich für Funkkommunikation und mehr Sicherheit im Straßenverkehr; Erstarrung in der Schwebe: Köln – Bochum: Materialwissenschaften zwischen Himmel und Erde; Frisches Blut in der Hundezucht: Wie sich die genetische Vielfalt bestimmen und erhalten lässt; Sushi American Style: Wie sich die japanische und die amerikanische Kultur vermischen; Gift aus dem Wasserhahn: Die Folgen von PFT im Trinkwasser; Von Cowboys und Prinzessinnen: Was der Gang über Läufer und Betrachter verrät; Der Kurs im eigenen Kiez: Die Sozialraumanalyse ergründet, wer sich warum wo weiterbildet; Schlanke Giganten: Vision Aufwindkraftwerk: Die technischen Voraussetzungen sind da, Bochumer Bauingenieure sind an der Entwicklung eines Prototyps beteiligt. RUBIN ist in der Pressestelle der RUB, UV 3/368, Tel. 0234/32-22830 erhältlich und steht im Internet unter http://www.rub.de/rubin

Weitere Informationen

Prof. Dr. Hartmut Zabel, Lehrstuhl für Experimentalphysik / Festkörperphysik der Ruhr-Universität Bochum, 44780 Bochum, NB 4 / 125, Tel. 0234/32-23649, Fax: 0234/32-14173, E-Mail: hartmut.zabel@rub.de

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.rub.de/rubin

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer