Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtgekühlte Mikro-Chips

14.04.2008
MPQ-Forscher wenden atomare Laserkühlung auf mesoskopische Systeme an

Makroskopische Objekte gehorchen den Gesetzen der klassischen Physik, mikroskopische den Gesetzen der Quantenmechanik. So weit, so gut. Aber wann hört ein System auf, sich klassisch zu verhalten und legt quantenmechanische Eigenschaften an den Tag?

Ein Testfeld dafür sind sogenannte mesoskopische, einige Mikrometer große Objekte, mit denen das Team von Dr. Tobias Kippenberg am MPQ in Garching hantiert. Bereits in früheren Arbeiten [1] gelang es den Wissenschaftlern, mit der für einzelne Quantenteilchen entwickelten Methode der Laserkühlung die Schwingungen eines mechanischen Mikroresonators effektiv zu dämpfen.

Nun haben sie gezeigt, dass sich auch die Weiterentwicklung der Laserkühlung, die "aufgelöste Seitenband-Kühlung", erfolgreich auf diese Objekte aus ca. 10 hoch 14 Molekülen anwenden lässt. Dieses Experiment ist ein wichtiger Schritt auf dem Weg, den Quantengrundzustand eines Objektes zu erreichen. Die hier erfolgreich demonstrierte Kühlung ist aber auch von praktischen Interesse, kann sie doch zu einer Verbesserung von technischen Verfahren wie der Raster-Kraft -Mikroskopie beitragen.

... mehr zu:
»Ion »Laserkühlung »Photon

Die Experimente der selbständigen Max-Planck-Nachwuchsgruppe "Laboratory of Photonics" von Dr. Tobias Kippenberg am MPQ gehen auf eine Idee zurück, die der russische theoretische Physiker Vladimir Braginski bereits in den 1970er Jahren formulierte. Wenn Licht in einem Resonator eingefangen ist, dann übt der Druck der Photonen auf das System eine "rückwirkende Kraft" aus, die dessen mechanische Schwingungen beeinflusst.

Diese Kräfte lassen sich zur effektiven Kühlung des Systems nutzen, was allerdings dessen extrem hohe optische und mechanische Güte voraussetzt. Erst kürzlich erlangte Fortschritte in den Materialien machten es daher möglich, diese von Braginski geäußerte Idee experimentell umzusetzen. Heute befassen sich Forscher weltweit mit der Laserkühlung mechanischer Mikrosysteme, mit dem Ziel, thermische Fluktuationen so weit zu unterdrücken, dass Quanteneffekte messbar werden.

Auf diesem Gebiet arbeiten in Europa neben dem MPQ das Laboratoire Kastler-Brossel in Paris sowie die Universität Wien, in den USA die Yale University, das California Institute of Technology (Caltech), das National Institute of Standards and Technology (NIST), das Massachusetts Institute of Technology (MIT) sowie die University of California Santa Barbara (USCB).

Theoretische Untersuchungen der Max-Planck-Nachwuchsgruppe in Zusammenarbeit mit der Gruppe von Wilhelm Zwerger an der Technischen Universität München, sowie parallele Arbeiten aus Yale und München, haben gezeigt, dass - in Analogie zur Laserkühlung von Atomen - der ultimative Quantengrundzustand, in dem die Bewegungsenergie des Oszillators auf das quantenmechanische Mindestmaß reduziert ist, aus grundsätzlichen Erwägungen in keinem der bis dato vorgeführten Experimente erreicht werden könnte.

Denn die rückwirkende Kraft der Photonen fluktuiert, d.h. die Lichtquanten versetzen dem System ganz zufällige "Kicks" und führen somit zu dessen Erwärmung. Einen Ausweg aus diesem Dilemma skizzierten Theoretiker schon in den 70er Jahren: die so genannte "aufgelöste Seitenband-Kühlung". Sie wurde erstmals in den 90er Jahren an einzelnen Atomen und Ionen erfolgreich erprobt.

Wenn sich ein Ion in einer Falle befindet, schwingt es ein wenig hin und her. Infolgedessen enthält das Absorptionsspektrum des Ions Serien von Seitenbändern, die um ein Einfaches oder Mehrfaches der Bewegungsfrequenz gegenüber der eigentlichen Resonanzfrequenz verschoben sind. Durch Einstrahlung mit Laserlicht, dessen Frequenz einem energetisch niedrigeren Seitenband entspricht, bringt man das Ion dazu, Photonen auszusenden, die mehr Energie haben als die Photonen, die es absorbiert. Dadurch erfolgt die Kühlung.

Auch in einem mechanischen Mikrooszillator kommt es unter bestimmten Bedingungen zu der Entstehung von Seitenbändern im optischen Absorptionsspektrum, so dass die "aufgelöste Seitenband-Kühlung" im Prinzip übertragbar ist. Voraussetzung dafür ist, dass die Frequenz des mechanischen Oszillators die optische Dissipationsrate übersteigt, so dass die Photonen über viele mechanische Schwingungsperioden im Resonator gefangen bleiben.
"Nur in diesem Fall kann der Kühlungseffekt die durch die Fluktuationen der Lichtkraft bewirkte Erwärmung überwiegen", erklärt Albert Schließer, Doktorand am Projekt.

Zusammen mit seinen Kollegen Rivière, Anetsberger und Dr. Arcizet konnte er dieses Regime jetzt auch experimentell erreichen. Dafür fertigten die Forscher in den Reinräumen von Prof. Jörg Kotthaus (Ludwig-Maximilians-Universität München) lithographisch gläserne Mikrotoroide an (Durchmesser: ca. 60 Mikrometer, mechanische Resonanzfrequenz: 70 MHz) und bestrahlten sie mit einem entsprechend rot-verstimmten Laser.
Die mechanischen Schwingungen wurden dann mit Hilfe eines weiteren, unabhängigen Lasersystems aufgezeichnet, wobei eine Empfindlichkeit von 10 hoch -18 Metern (100 Millionen Mal kleiner als der Durchmesser des Wasserstoffatoms) in einer Messzeit von nur einer Sekunde erreicht wurde. So konnte die starke Reduzierung der Fluktuationen des mechanischen Oszillators - also seine effektive Kühlung - zweifelsfrei nachgewiesen werden.

Die Methode der "aufgelösten Seitenband-Kühlung" wurde hier erstmals erfolgreich auf ein mesoskopisches Objekt angewandt. Der Quantengrundzustand wurde zwar noch nicht erreicht, der mechanische Freiheitsgrad konnte aber auf das etwa 5900-fache der Quantengrundzustandsenergie abgekühlt werden. Allerdings ist das Experiment ein fundamental wichtiger Schritt auf dem Weg, quantenmechanische Phänomene bei makroskopischen Objekten zu beobachten. Die Marschroute der MPQ-Forscher für die nahe Zukunft ist abgesteckt und lässt spannende Physik erwarten. [OM/AS]
[1]Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J.
Radiation pressure cooling of a micromechanical oscillator using dynamical backaction

Physical Review Letters 97, 243905 (2006).

Originalveröffentlichung:

Resolved Sideband Cooling of a Micromechanical Oscillator
A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet und T. J. Kippenberg
Nature Physics, DOI 10.1038/nphys939 (2008).
Kontakt:
Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-Mail: tobias.kippenberg@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik,
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de
http://www.mpq.mpg.de/k-lab

Weitere Berichte zu: Ion Laserkühlung Photon

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften