Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomare Bits im Blick

04.04.2008
Eine Hamburger Forschergruppe wirft den ersten direkten "Blick" auf die Magnetisierung einzelner Atome.

Wie die renommierte Zeitschrift "Science" in der Ausgabe vom 04.04.2008 berichtet, gelang es Focko Meier, Lihui Zhou, Jens Wiebe und Roland Wiesendanger die magnetische Ausrichtung einzelner Atome, die auf einer metallischen Unterlage liegen, erstmals direkt abzubilden. Damit ist die Grundlage geschaffen, den Zustand des kleinstmöglichen Bits der magnetischen Speichertechnologie, das man sich vorstellen kann, auszulesen. Bereits im September vergangenen Jahres hat die Forschungsgruppe um Roland Wiesendanger in einer ebenfalls in der Zeitschrift "Science" veröffentlichten Arbeit gezeigt, dass auch magnetische Schreibprozesse bis in atomare Dimensionen möglich sind.



Abbildung der mit der magnetischen Spitze des Rastertunnelmikroskops abgetasteten Cobalt-Atome, die auf einer gestuften Platinunterlage (blau) liegen. An den Stufen der Platinunterlage sind zusätzlich so genannte Cobalt-Streifen zu sehen (gelb und rot), die aus vielen hundert dicht gepackten Cobalt-Atomen bestehen. Diese sind magnetisch stabil und dienen der Kalibrierung des Lesekopfes (Spitze). Gelbe Streifen sind nach oben, und rote nach unten magnetisiert. Interessanterweise verhalten sich die Cobalt-Atome in der Nähe der Streifen ebenfalls magnetisch stabil. Ihr Zustand ("0" oder "1") hängt vom Abstand zum Streifen, und von dessen Magnetisierungszustand ab (siehe Pfeile).
© SPM-Gruppe von Prof. R. Wiesendanger, Institut für Angewandte Physik & Sonderforschungsbereich 668, Universität Hamburg

Die stetig zunehmende Miniaturisierung heute üblicher elektronischer Geräte wie Mobiltelefone, oder Digitalkameras erfordert immer leistungsfähigere Speicher, welche die Flut der Daten auf kleinstem Raum erfassen können. Daher gab es in den letzten Jahrzehnten einen dramatischen Anstieg der Speicherdichte von magnetischen Datenspeichern, der im Wesentlichen durch die stetige Verkleinerung der Grundbausteine solcher Speicher, der Bits, erreicht wurde. Solche Bits sind voneinander isolierte magnetische Einheiten, deren Magnetisierung nach oben ("1") oder nach unten ("0") ausgerichtet werden kann, um Information zu speichern. Der Magnetisierungszustand des Bits kann anschließend mittels eines geeigneten Lesekopfes wieder ausgelesen werden, um auf die Information zuzugreifen. Wäre man nun in der Lage, Bits aus einzelnen Atomen herzustellen, so ergäben sich immens hohe Speicherdichten. Es gibt bereits Ideen, solche atomaren Bits, bei denen die quantenmechanischen Eigenschaften zutage treten (so genannte Qubits), für völlig neuartige Rechenverfahren zu nutzen, um in so genannten Quantencomputern die Rechengeschwindigkeit zu erhöhen. Die wichtigste Voraussetzung für solche Technologien ist, dass der Magnetisierungszustand solch eines Qubits überhaupt ausgelesen werden kann.

Hamburger Wissenschaftlern ist es nun gelungen, den Magnetisierungszustand des kleinst-denkbaren Bits, eines einzelnen magnetischen Atoms, das auf einer nichtmagnetischen Unterlage liegt, auszulesen. Dazu benutzten sie Cobalt-Atome, die auf eine Platinunterlage aufgebracht wurden (siehe Abbildung). Als Lesekopf dient die magnetisch beschichtete Spitze eines Rastertunnelmikroskops, mit deren Hilfe die Atome berührungslos in einem Abstand von wenigen Atomdurchmessern abgetastet werden.

Bevor allerdings mithilfe solcher Strukturen funktionierende Speichermedien gebaut werden können, sind noch große Herausforderungen zu überwinden. Bei magnetischen Speichern ist essentiell, dass die Magnetisierung der Bits nicht von selbst von "1" nach "0" schaltet, da sonst die Information verloren gehen würde. Die Bits müssen also bei Raumtemperatur "magnetisch stabil" sein. Wie die Hamburger Forschergruppe festgestellt hat, ist dies für die von ihnen untersuchten Cobalt-Atome selbst bei extrem tiefen Temperaturen von -273 °C nahe dem absoluten Nullpunkt nicht der Fall: Die Cobalt-Atome schalten statistisch zwischen "1" und "0" und können nur mithilfe eines von außen angelegten Magnetfeldes in einen bevorzugten Zustand gezwungen werden. Dies kommt einem Löschvorgang des gesamten Speichers gleich, da anschließend alle Bits im selben Zustand sind, d.h. der Informationsgehalt ist Null.

Dagegen sind aus vielen hunderten solcher Cobalt-Atome zusammengesetzte "Streifen" bei diesen Temperaturen schon magnetisch stabil (siehe Abbildung). Eine weitere Schwierigkeit liegt in der wechselseitigen Beeinflussung der Bits. Bei den Untersuchungen in Hamburg hat sich interessanterweise gezeigt, dass der Magnetisierungszustand benachbarter Bits über das Substrat koppelt. Ist ein Bit im Zustand "0", so kann ein benachbartes Bit in den Zustand "1" gezwungen werden. Dieser Effekt wirkt sich ebenfalls störend auf die Speicherstabilität aus. Mithilfe der in Hamburg etablierten Technik können nun verschiedene Materialkombinationen der Unterlage und der Bits auf magnetische Stabilität und Kopplung getestet werden, mit dem Ziel, zumindest bei tiefen Temperaturen das Konzept eines Speichers mit atomaren Qubits zu demonstrieren.

Originale Veröffentlichung:
F. Meier, L. Zhou, J. Wiebe, and R. Wiesendanger,
Revealing magnetic interactions from single-atom magnetization curves,
Science 320, 82-86 (2008).
doi: 10.1126/science.1154415
Weitere Informationen:
Dipl.-Chem. Heiko Fuchs
Öffentlichkeitsarbeit
Sonderforschungsbereich 668
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 11a
20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de
http://www.nanoscience.de

Weitere Berichte zu: Atom Bit Magnetisierung Magnetisierungszustand

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik