Supraleitung in neuem Zustand

Erstmals konnte in Experimenten ein bereits im Jahr 1964 vorhergesagter neuer Zustand zwischen normaler Leitung und Supraleitung an organischen Supraleitern nachgewiesen werden. Diese Experimente wurden gemeinschaftlich von Forschern des Dresdner Hochfeld-Magnetlabors am Forschungszentrum Dresden-Rossendorf sowie der Universitäten Genf, Braunschweig, Dresden und Osaka/Japan am Hochfeldlabor Grenoble durchgeführt.

Supraleiter verlieren bei tiefen Temperaturen ihren elektrischen Widerstand. Sie werden heute beispielsweise für Magnetspulen in Kernspintomographen oder Teilchenbeschleunigern eingesetzt. Jedes supraleitende Material wird jenseits eines kritischen Magnetfeldes zu einem normalen Leiter. Bei bestimmten Substanzen jedoch tritt im Magnetfeld zwischen die beiden Zustände Supraleitung und Normalleitung eine neue Zwitterphase, in der sich lokal Teile des Materials supraleitend verhalten, während andere Teile des Materials normalleitend sind.

Damit wird es möglich, die Supraleitung in weitaus höheren Magnetfeldern als bisher aufrecht zu erhalten. Dieser Zustand kann bevorzugt in Supraleitern auftreten, die auf der Nanometerskala aus leitfähigen und isolierenden Schichten aufgebaut sind.

Prof. Peter Fulde vom Max-Planck-Institut für Physik komplexer Systeme in Dresden veröffentlichte im Jahr 1964 zusammen mit Prof. Richard Ferrell eine Arbeit über diesen besonderen Zustand von supraleitenden Materialien. Schon dort wurde er als räumlich periodische Modulation der Supraleitung charakterisiert. Etwa zeitgleich sagten auch zwei weitere Forscher diesen Zustand vorher, weshalb man heute von der Fulde-Ferrell-Larkin-Ovchinnikov-Phase der Supraleitung spricht.

Die ersten erfolgreichen Experimente an einem organischen Supraleiter wurden bereits 2007 am Hochfeldlabor in Grenoble in statischen Magnetfeldern durchgeführt. Dieses Material müsste eigentlich schon bei ca. 22 Tesla (Tesla ist die Einheit für die magnetische Flussdichte und ist damit auch ein Maß für die Stärke des Magnetfeldes) seine supraleitende Eigenschaft verlieren. Legt man jedoch ein Magnetfeld parallel zu den Schichten aus leitenden organischen Molekülen an, kann die Supraleitung wegen der Zwitterphase noch bis zu weitaus größeren Feldern bestehen. Die Ergebnisse wurden im Fachjournal „Physical Review Letters“ veröffentlicht.

Eine zweite Experimentreihe wurde vor kurzem beendet. Auch hieran waren Forscher des Hochfeld-Magnetlabors Dresden am Forschungszentrum Dresden-Rossendorf beteiligt. Die Zwitterphase wurde jetzt mit einer weiteren Methode nachgewiesen und bei tiefen Temperaturen genauer untersucht. Damit ist es gelungen, Supraleitung an diesem Material in hohen Magnetfeldern bis zu 32 Tesla zu beobachten.

Titel der Veröffentlichung:
R. Lortz et al., Calorimetric Evidence for a Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in the Layered Organic Superconductor k-(BEDT-TTF)2Cu(NCS)2, in: Physical Review Letters 99, 187002 (2007).
Weitere Informationen:
Prof. Joachim Wosnitza
Forschungszentrum Dresden-Rossendorf (FZD)
Institut Hochfeld-Magnetlabor Dresden
Tel.: 0351 260 – 3524
Email: j.wosnitza@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 – 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de
Information:
Das FZD leistet wesentliche Beiträge in der Grundlagen- und anwendungsorientierten Forschung zu folgenden Fragestellungen:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Das FZD engagiert sich für die Umsetzung der wissenschaftlichen Erkenntnisse im Hinblick auf die zukünftige Gestaltung von Wirtschaft und Gesellschaft. Es betreibt zu diesem Zweck sechs größere Forschungsanlagen, die auch externen Nutzern zur Verfügung stehen.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 55 Mill. Euro (Stand: 12/2007). Hinzu kommen etwa 9 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 82 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Ländern gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen mehr als 13.000 Mitarbeiter.

Media Contact

Dr. Christine Bohnet idw

Weitere Informationen:

http://www.fzd.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer