Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung in neuem Zustand

28.03.2008
Supraleiter sind Materialien, die bei tiefen Temperaturen verlustfrei Strom leiten. Ein hohes Magnetfeld zerstört normalerweise die Supraleitung und verwandelt das Material in einen normalen Leiter.

Erstmals konnte in Experimenten ein bereits im Jahr 1964 vorhergesagter neuer Zustand zwischen normaler Leitung und Supraleitung an organischen Supraleitern nachgewiesen werden. Diese Experimente wurden gemeinschaftlich von Forschern des Dresdner Hochfeld-Magnetlabors am Forschungszentrum Dresden-Rossendorf sowie der Universitäten Genf, Braunschweig, Dresden und Osaka/Japan am Hochfeldlabor Grenoble durchgeführt.

Supraleiter verlieren bei tiefen Temperaturen ihren elektrischen Widerstand. Sie werden heute beispielsweise für Magnetspulen in Kernspintomographen oder Teilchenbeschleunigern eingesetzt. Jedes supraleitende Material wird jenseits eines kritischen Magnetfeldes zu einem normalen Leiter. Bei bestimmten Substanzen jedoch tritt im Magnetfeld zwischen die beiden Zustände Supraleitung und Normalleitung eine neue Zwitterphase, in der sich lokal Teile des Materials supraleitend verhalten, während andere Teile des Materials normalleitend sind.

Damit wird es möglich, die Supraleitung in weitaus höheren Magnetfeldern als bisher aufrecht zu erhalten. Dieser Zustand kann bevorzugt in Supraleitern auftreten, die auf der Nanometerskala aus leitfähigen und isolierenden Schichten aufgebaut sind.

Prof. Peter Fulde vom Max-Planck-Institut für Physik komplexer Systeme in Dresden veröffentlichte im Jahr 1964 zusammen mit Prof. Richard Ferrell eine Arbeit über diesen besonderen Zustand von supraleitenden Materialien. Schon dort wurde er als räumlich periodische Modulation der Supraleitung charakterisiert. Etwa zeitgleich sagten auch zwei weitere Forscher diesen Zustand vorher, weshalb man heute von der Fulde-Ferrell-Larkin-Ovchinnikov-Phase der Supraleitung spricht.

Die ersten erfolgreichen Experimente an einem organischen Supraleiter wurden bereits 2007 am Hochfeldlabor in Grenoble in statischen Magnetfeldern durchgeführt. Dieses Material müsste eigentlich schon bei ca. 22 Tesla (Tesla ist die Einheit für die magnetische Flussdichte und ist damit auch ein Maß für die Stärke des Magnetfeldes) seine supraleitende Eigenschaft verlieren. Legt man jedoch ein Magnetfeld parallel zu den Schichten aus leitenden organischen Molekülen an, kann die Supraleitung wegen der Zwitterphase noch bis zu weitaus größeren Feldern bestehen. Die Ergebnisse wurden im Fachjournal "Physical Review Letters" veröffentlicht.

Eine zweite Experimentreihe wurde vor kurzem beendet. Auch hieran waren Forscher des Hochfeld-Magnetlabors Dresden am Forschungszentrum Dresden-Rossendorf beteiligt. Die Zwitterphase wurde jetzt mit einer weiteren Methode nachgewiesen und bei tiefen Temperaturen genauer untersucht. Damit ist es gelungen, Supraleitung an diesem Material in hohen Magnetfeldern bis zu 32 Tesla zu beobachten.

Titel der Veröffentlichung:
R. Lortz et al., Calorimetric Evidence for a Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in the Layered Organic Superconductor k-(BEDT-TTF)2Cu(NCS)2, in: Physical Review Letters 99, 187002 (2007).
Weitere Informationen:
Prof. Joachim Wosnitza
Forschungszentrum Dresden-Rossendorf (FZD)
Institut Hochfeld-Magnetlabor Dresden
Tel.: 0351 260 - 3524
Email: j.wosnitza@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de
Information:
Das FZD leistet wesentliche Beiträge in der Grundlagen- und anwendungsorientierten Forschung zu folgenden Fragestellungen:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Das FZD engagiert sich für die Umsetzung der wissenschaftlichen Erkenntnisse im Hinblick auf die zukünftige Gestaltung von Wirtschaft und Gesellschaft. Es betreibt zu diesem Zweck sechs größere Forschungsanlagen, die auch externen Nutzern zur Verfügung stehen.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 55 Mill. Euro (Stand: 12/2007). Hinzu kommen etwa 9 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 82 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Ländern gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen mehr als 13.000 Mitarbeiter.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Berichte zu: FZD Hochfeld-Magnetlabor Magnetfeld Supraleiter Supraleitung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie

Biomarker zeigen Aggressivität des Tumors an

26.07.2017 | Biowissenschaften Chemie