Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verwandter einer Aminosäure im All entdeckt

26.03.2008
Max-Planck-Wissenschaftler finden Aminoacetonitril nahe dem galaktischen Zentrum

Mit einer 30-Meter-Antenne in der spanischen Sierra Nevada und zwei Radioteleskop-Netzwerken in Frankreich und Australien haben Forscher des Bonner Max-Planck-Instituts für Radioastronomie erstmals den nahen Verwandten einer Aminosäure aufgespürt: Aminoacetonitril. Das organische Molekül fand sich in der "Heimat der großen Moleküle", einer gigantischen Gaswolke nahe des galaktischen Zentrums im Sternbild Schütze (Astronomy & Astrophysics, im Druck).


Struktur des Aminoacetonitril (NH2CH2CN). Bild: Sven Thorwirth, MPIfR


Radioteleskope, mit denen die Entdeckung von Aminoacetonitril im Weltraum möglich wurde: das IRAM 30-Meter-Teleskop in Spanien ( links), das IRAM Plateau-de-Bure-Interferometer in Frankreich ( Mitte) sowie das Australia Telescope Compact Array ( rechts). Bild: IRAM, ATNF

Die "Heimat der großen Moleküle" erscheint als sehr dichter, heißer Gasklumpen innerhalb des Sternentstehungsgebiets Sagittarius B2. In diesem Klumpen von gerade einmal 0,3 Lichtjahren Durchmesser, der von einer tief im Innern verborgenen jungen Sonne aufgeheizt wird, fanden sich die meisten der bisher im Weltraum nachgewiesenen organischen Moleküle - darunter so komplexe Verbindungen wie Äthylalkohol, Formaldehyd, Ameisensäure, Essigsäure, Glykolaldehyd und Äthylenglykol.

Fahndung nach Lebensbausteinen

Von 1965 bis heute wurden mehr als 140 verschiedene Moleküle im Weltall identifiziert, sowohl in interstellaren Wolken als auch in ausgedehnten Hüllen um Sterne. Ein Großteil davon ist organisch, das heißt, auf Kohlenstoffbasis aufgebaut. Besonders intensiv fahnden die Forscher nach sogenannten Biomolekülen - und dabei speziell nach Aminosäuren, den unabdingbaren Bausteinen des Lebens. Aminosäuren ließen sich bereits in Meteoriten auf der Erde nachweisen, nicht aber im interstellaren Raum.

Nach der einfachsten Aminosäure Glycin (NH2CH2COOH) wurde in kosmischen Quellen bereits lange, doch bisher vergeblich gesucht. Angesichts dieser Schwierigkeiten konzentrierte sich die Fahndung auf Aminoacetonitril (NH2CH2CN), einen chemischen Verwandten und möglichen direkten Vorläufer von Glycin.

Ein dichter Wald aus Spektrallinien

So nahmen die Wissenschaftler des Bonner Max-Planck-Instituts für Radioastronomie die "Heimat der großen Moleküle", wie die Quelle unter Fachleuten genannt wird, ins Visier und durchforsteten mit dem IRAM 30-Meter-Teleskop in Spanien einen dichten Wald von 3700 Spektrallinien komplexer Moleküle. Atome und Moleküle leuchten nur bei ganz speziellen Frequenzen, die als charakteristische Linien im Spektrum der Gesamtstrahlung auftreten.

Durch die Analyse solcher Spektrallinien lässt sich aus der Radiostrahlung einer kosmischen Wolke auf deren chemische Zusammensetzung schließen. Je komplexer ein Molekül, desto mehr Möglichkeiten hat es, seine interne Energie abzustrahlen. Deshalb emittieren komplexe Moleküle sehr viele Spektrallinien, die allerdings alle recht schwach sind und sich daher im "Linien-Dschungel" schwer identifizieren lassen.

Kontrolle mit zwei Netzwerken
"Trotzdem gelang es uns schließlich, 51 sehr schwache Linien eindeutig dem Molekül Aminoacetonitril zuzuordnen", sagt Arnaud Belloche, Max-Planck-Wissenschaftler und Erstautor der Publikation in Astronomy & Astrophysics. Bestätigt wurde das Ergebnis bei zehnfach höherer räumlicher Auflösung durch Beobachtungen mit zwei Radioteleskop-Netzwerken: dem Plateau-de-Bure Interferometer in Frankreich sowie dem Australia Telescope Compact Array. Mit diesen Messungen zeigten die Forscher, dass alle registrierten Linien tatsächlich vom selben Ort innerhalb der "Heimat der großen Moleküle" stammen. Belloche sieht das als "zwingenden Beweis für die Glaubwürdigkeit unserer Identifikation".

"Die Entdeckung von Aminoacetonitril hat unser Verständnis der chemischen Vorgänge in dichten, heißen Sternentstehungsgebieten deutlich erweitert. Ich denke, wir werden in Zukunft viele weitere, noch komplexere organische Moleküle im interstellaren Gas nachweisen können. Mehrere Kandidaten haben wir schon!", sagt Karl Menten, Direktor am Max-Planck-Institut für Radioastronomie und Leiter der Forschungsgruppe "Millimeter- und Submillimeterastronomie"

IRAM, das Institut für Radioastronomie bei Millimeter-Wellenlängen, ist ein deutsch-französisch-spanisches Forschungsinstitut, das ein 30-Meter-Radioteleskop auf dem Pico Veleta in knapp 3000 Meter Höhe in der spanischen Sierra Nevada betreibt, außerdem ein aus sechs Einzelteleskopen bestehendes Radiointerferometer auf dem Plateau de Bure in den französischen Alpen nahe Grenoble. Beide Instrumente kamen bei der Entdeckung von Aminoacetonitril im Weltraum zum Einsatz.

ATCA, das Australia Telescope Compact Array, ist ebenfalls ein Radiointerferometer, bestehend aus sechs Teleskopen, das etwa 25 Kilometer westlich des Ortes Narrabri im australischen Bundesstaat New South Wales zu finden ist. Die Anlage wird von der Australia Telescope National Facility in Sydney betrieben.

Originalveröffentlichung:

Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, C. Hieret
Detection of amino acetonitrile in Sgr B2(N)
Astronomy & Astrophysics (im Druck), [DOI 10.1051/0004-6361: 20079203]

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Aminosäure Molekül Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Quantenlineal für Biomoleküle

22.08.2017 | Biowissenschaften Chemie

Prostatakrebs: Bluttest sagt Tumorresistenz vorher

22.08.2017 | Biowissenschaften Chemie

IVAM-Marketingpreis würdigt zum zehnten Mal überzeugendes Technologiemarketing

22.08.2017 | Förderungen Preise