Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atombewegungen sichtbar machen

14.03.2008
Physiker und Gerätebauer haben einen kommerziellen Prototyp für die Femtosekunden-Röntgenbeugung entwickelt. Damit steht ein international konkurrenzloses Gerät für Grundlagenuntersuchungen in Physik, Chemie und Materialwissenschaften zur Verfügung, das ultra schnelle Atombewegungen sichtbar machen kann.

Physiker am Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin-Adlershof haben in Zusammenarbeit mit Gerätebauern der Adlershofer Firma IfG - Institute for Scientific Instruments GmbH und der Fa. Feinmechanik Teltow ein Prototyp-Labor-Gerät für Röntgenbeugung im Ultrakurzzeitbereich entwickelt.

In einer modular aufgebauten Anlage werden unter Verwendung eines kommerziellen Hochleistungslasers Blitze harter Röntgenstrahlung erzeugt, deren Dauer ungefähr eine Zehntel Pikosekunde (1 Pikosekunde = 1 Millionstel einer Millionstel Sekunde) beträgt. Damit steht ein international konkurrenzloses Gerät für Grundlagenuntersuchungen in Physik, Chemie und Materialwissenschaften zur Verfügung.

In der Nanotechnologie und der molekularen Biologie arbeiten Wissenschaftler mit immer kleineren Strukturen wie einzelnen Atomschichten oder Molekülgruppen. Sie wollen in diese Strukturen gezielt eingreifen und dadurch bestimmte Funktionen erzielen. Veränderungen in solchen Nanostrukturen haben eines gemeinsam: Sie spielen sich auf unvorstellbar kleinem Raum ab und sie sind extrem schnell. "Für das Verständnis dieser ultraschnellen Prozesse brauchen wir ein anschauliches Bild davon, was auf atomarer Ebene passiert", sagt der Physiker Matias Bargheer. Bereits seit hundert Jahren liefert die Röntgenbeugung extrem genaue Informationen über die Struktur von Molekülen und Festkörpern. Seit einigen Jahren können Physiker nun auch ultrakurze Röntgenblitze herstellen. Diese liefern Schnappschüsse der ultraschnellen Atombewegungen mit einer Belichtungszeit von etwa 0,1 Pikosekunde.

... mehr zu:
»Atombewegung »Physik »Pikosekunde

Nur wenige hochspezialisierte Forschergruppen - dazu zählt auch die Gruppe am MBI - konnten bisher solche Röntgenblitze erzeugen. Aber auch viele Grundlagenforscher aus den Bereichen Chemie und Materialwissenschaften interessieren sich für die Methode. Matias Bargheer: "Unser ursprünglicher Versuchsaufbau war aber nicht ohne weiteres auf andere Labore übertragbar und erforderte viel Spezialwissen." Das entwickelte Prototyp-Labor sei nun auch von Nicht-Laserphysikern bedienbar und zudem noch "erschwinglicher als ein Computer-Tomograph", so Bargheer. Erst in einigen Jahren werden vergleichbare Untersuchungen an sogenannten Freie-Elektronen-Lasern im Röntgenbereich möglich sein, die sich derzeit noch im Aufbau befinden.

Mit der Methode der Femtosekunden-Röntgenbeugung gelang es dem Physiker und seinen Kollegen bereits, ultraschnelle Bewegungen in verschiedenen Nanostrukturen zu verfolgen und die Mechanismen zu identifizieren, die zu ultraschnellen Veränderungen führen. Sie konnten beispielsweise beobachten, wie durch optische Anregung einer metallisch-ferroelektrischen Nanoschicht die elektrische Polarisation in nur 1 Pikosekunde abgeschaltet werden konnte (Korff-Schmising et al, Physical Review Letters, 98, 257601, 2007). "Solche Erkenntnisse können beim Design neuer elektronischer Bauelemente helfen, die unsere Computer noch tausendmal schneller machen", hofft Bargheer. Ähnliche Methoden haben die MBI-Physiker auch auf Halbleiter-Nanostrukturen und Molekülkristalle angewendet.

Über das Prototyp-Labor zur Femtosekunden-Röntgenbeugung, dessen Entwicklung auch im Rahmen des PROFIT Programms des Berliner Senats gefördert wurde, berichten Matias Bargheer, der mittlerweile eine Juniorprofessur an der Universität Potsdam innehat, und seine Kollegen vom Institute for Scientific Instruments am 17. März 2008 auf der "Laser Optics Berlin". Neben den wissenschaftlichen Ergebnissen und den geschaffenen Möglichkeiten zu einer breiten Applikationsforschung haben sich bereits erste kommerzielle Erfolge ergeben. Noch in diesem Jahr wird für ein Max-Planck-Institut in Göttingen eine weitere Femtosekunden-Röntgenquelle vom IFG aufgebaut. Weitere Anfragen liegen bereits vor.

Weitere Informationen:
Prof. M. Bargheer, Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknechtstr. 24-25, 14476 Potsdam, Tel. 0331 977 4272, Fax.: 0331 977 549, E-Mail: bargheer@uni-potsdam.de

Prof. T. Elsässer, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2 A, 12489 Berlin, Tel. 030 63921401, Email: elsaesser@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: Atombewegung Physik Pikosekunde

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

nachricht Neue Erscheinungsform magnetischer Monopole entdeckt
08.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie