Atombewegungen sichtbar machen

Physiker am Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin-Adlershof haben in Zusammenarbeit mit Gerätebauern der Adlershofer Firma IfG – Institute for Scientific Instruments GmbH und der Fa. Feinmechanik Teltow ein Prototyp-Labor-Gerät für Röntgenbeugung im Ultrakurzzeitbereich entwickelt.

In einer modular aufgebauten Anlage werden unter Verwendung eines kommerziellen Hochleistungslasers Blitze harter Röntgenstrahlung erzeugt, deren Dauer ungefähr eine Zehntel Pikosekunde (1 Pikosekunde = 1 Millionstel einer Millionstel Sekunde) beträgt. Damit steht ein international konkurrenzloses Gerät für Grundlagenuntersuchungen in Physik, Chemie und Materialwissenschaften zur Verfügung.

In der Nanotechnologie und der molekularen Biologie arbeiten Wissenschaftler mit immer kleineren Strukturen wie einzelnen Atomschichten oder Molekülgruppen. Sie wollen in diese Strukturen gezielt eingreifen und dadurch bestimmte Funktionen erzielen. Veränderungen in solchen Nanostrukturen haben eines gemeinsam: Sie spielen sich auf unvorstellbar kleinem Raum ab und sie sind extrem schnell. „Für das Verständnis dieser ultraschnellen Prozesse brauchen wir ein anschauliches Bild davon, was auf atomarer Ebene passiert“, sagt der Physiker Matias Bargheer. Bereits seit hundert Jahren liefert die Röntgenbeugung extrem genaue Informationen über die Struktur von Molekülen und Festkörpern. Seit einigen Jahren können Physiker nun auch ultrakurze Röntgenblitze herstellen. Diese liefern Schnappschüsse der ultraschnellen Atombewegungen mit einer Belichtungszeit von etwa 0,1 Pikosekunde.

Nur wenige hochspezialisierte Forschergruppen – dazu zählt auch die Gruppe am MBI – konnten bisher solche Röntgenblitze erzeugen. Aber auch viele Grundlagenforscher aus den Bereichen Chemie und Materialwissenschaften interessieren sich für die Methode. Matias Bargheer: „Unser ursprünglicher Versuchsaufbau war aber nicht ohne weiteres auf andere Labore übertragbar und erforderte viel Spezialwissen.“ Das entwickelte Prototyp-Labor sei nun auch von Nicht-Laserphysikern bedienbar und zudem noch „erschwinglicher als ein Computer-Tomograph“, so Bargheer. Erst in einigen Jahren werden vergleichbare Untersuchungen an sogenannten Freie-Elektronen-Lasern im Röntgenbereich möglich sein, die sich derzeit noch im Aufbau befinden.

Mit der Methode der Femtosekunden-Röntgenbeugung gelang es dem Physiker und seinen Kollegen bereits, ultraschnelle Bewegungen in verschiedenen Nanostrukturen zu verfolgen und die Mechanismen zu identifizieren, die zu ultraschnellen Veränderungen führen. Sie konnten beispielsweise beobachten, wie durch optische Anregung einer metallisch-ferroelektrischen Nanoschicht die elektrische Polarisation in nur 1 Pikosekunde abgeschaltet werden konnte (Korff-Schmising et al, Physical Review Letters, 98, 257601, 2007). „Solche Erkenntnisse können beim Design neuer elektronischer Bauelemente helfen, die unsere Computer noch tausendmal schneller machen“, hofft Bargheer. Ähnliche Methoden haben die MBI-Physiker auch auf Halbleiter-Nanostrukturen und Molekülkristalle angewendet.

Über das Prototyp-Labor zur Femtosekunden-Röntgenbeugung, dessen Entwicklung auch im Rahmen des PROFIT Programms des Berliner Senats gefördert wurde, berichten Matias Bargheer, der mittlerweile eine Juniorprofessur an der Universität Potsdam innehat, und seine Kollegen vom Institute for Scientific Instruments am 17. März 2008 auf der „Laser Optics Berlin“. Neben den wissenschaftlichen Ergebnissen und den geschaffenen Möglichkeiten zu einer breiten Applikationsforschung haben sich bereits erste kommerzielle Erfolge ergeben. Noch in diesem Jahr wird für ein Max-Planck-Institut in Göttingen eine weitere Femtosekunden-Röntgenquelle vom IFG aufgebaut. Weitere Anfragen liegen bereits vor.

Weitere Informationen:
Prof. M. Bargheer, Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknechtstr. 24-25, 14476 Potsdam, Tel. 0331 977 4272, Fax.: 0331 977 549, E-Mail: bargheer@uni-potsdam.de

Prof. T. Elsässer, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2 A, 12489 Berlin, Tel. 030 63921401, Email: elsaesser@mbi-berlin.de

Media Contact

Christine Vollgraf idw

Weitere Informationen:

http://www.mbi-berlin.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer