RWTH-Wissenschaftler auf dem Weg zum Quantencomputer

Noch sind sie Vision: Quantencomputer werden eines Tages blitzschnell ein Vielfaches an Daten als heute verarbeiten. Diese neue Computergeneration wird ein anderes, wesentlich effizienteres Arbeitsverhalten als herkömmliche Großrechner oder Personalcomputer an den Tag legen:

Sie nutzen nicht länger klassische Bits wie beispielsweise zwei verschiedene elektronische Spannungszustände zur Datenverarbeitung im Arbeitsspeicher, sondern Quanten-Bits, kurz qubits genannt. Sie sind aus wohl definierten quantenmechanischen Zuständen aufgebaut. Zudem werden die Quantencomputer eine neue Sicherheitsstufe erreichen. Unbefugte zerstören beim Eindringen in den Rechner sofort die Quantenzustände und damit die mit ihnen durchgeführten Rechenoperationen, da sie die individuelle Überlagerung der Quantenzustände nicht kennen.

Derzeit wird in diesem Bereich an unterschiedlichen Konzepten geforscht. An der RWTH Aachen befassen sich Univ.-Prof. Dr. sc. nat. Gernot Güntherodt und sein Team mit Quantenzuständen, die der Überlagerung von so genannten up- und down-Zuständen des quantenmechanischen Spins eines Elektrons dienen. Der Spin kommt durch die Drehung des Elektrons um sich selbst zustande. Einem Kinderkreisel vergleichbar, behält das Elektron seine Spinrichtung im Raum bei, solange es nicht von außen in seiner Bewegung gestört wird. Die Spinelektronik ist das wissenschaftliche Spezialgebiet von Professor Güntherodt, Leiter des RWTH-Lehrstuhls für Experimentalphysik II A. Gemeinsam mit Kollegen und Kolleginnen am Forschungszentrum Jülich und an der Universität Göttingen erforscht er im Rahmen des Virtuellen Instituts für Spinelektronik (VISEL) der Helmholtz-Gemeinschaft die Spinzustände in Halbleitern. Im Mittelpunkt stehen dabei ihre Lebensdauer und ihre potenziellen Anwendungen.

Im dem 2007 gegründeten Forschungsbündnis Jülich-Aachen Research Alliance (JARA) zielen die Arbeiten auf die Grundlagen der spinbasierten Informationstechnologie. Der Vorteil der Quanten-Computer gegenüber der derzeitigen Rechnertechnik leuchtet ein: „Bei den herkömmlichen Rechnern müssen sich die Elektronen mit ihren Ladungen für einen Bit-Wechsel von A nach B bewegen. Künftig genügt es, wenn die Spinzustände der Elektronen in ihrer Orientierung gedreht werden, was Zeit spart. Somit können die Rechenoperationen schneller durchgeführt werden.“ Die derzeitige Forschung sucht Wege, die kontrollierte Ausrichtung der Spins möglichst so lange zu erhalten, bis alle Rechenoperationen ausgeführt sind.

Bis dieses Konzept eines Quantencoputers realisiert ist, muss die Grundlagenforschung noch Erhebliches leisten. Die hochkarätig zusammengesetzte JARA-Expertise in Aachen und Jülich im Bereich der Informationstechnologie beschäftigt sich daher intensiv mit verschiedenen Aspekten der Spinelektronik. Vor kurzem wurde eine Forschergruppe zum Thema „Kohärenz- und Relaxationseigenschaften von Elektronenspins“ mit Partnern aus Aachen, Jülich, Dresden und Braunschweig von der Deutschen Forschungsgemeinschaft bewilligt, die in den nächsten drei Jahren mit bis zu drei Millionen Euro gefördert wird. Ziel ist hierbei, mehr über die Zustände der Elektronen-Spins in variierenden Materialien wie Kohlenstoff-Nanoröhrchen, Graphen, Halbleiterdrähten und Kuprat-Spinketten zu erfahren.

Durch die neue Allianz JARA im Rahmen der Exzellenzinitiative erhält der bewährte Aachen-Jülicher Forschungsschwerpunkt Spintronik zusätzliche Dynamik. „Das Forschungszentrum Jülich und unser RWTH-Institut haben in früheren Jahren vielfältig kooperiert. Durch JARA erhält die Zusammenarbeit aber einen enormen Schub“, berichtet Güntherodt. Zwei zusätzliche Juniorprofessuren sind bewilligt, zudem können wissenschaftliche Geräte, Labor- und Büroflächen in Aachen und Jülich je nach Bedarf wechselseitig genutzt werden.

Schon heute wird die Spinelektronik in kleineren, nicht so komplexen Bauelementen genutzt. So haben moderne Festplatten bereits „Spin valve“-Dünnschicht-Leseköpfe, die den Festplatteninhalt auslesen und an den Arbeitsspeicher des Computers weitergeben. „Dabei nutzen sie den Riesenmagnetowiderstand GMR, für den unser Jülicher Kollege Peter Grünberg gemeinsam mit dem Pariser Albert Fert den jüngsten Nobelpreis für Physik erhalten hat“, erläutert der RWTH-Wissenschaftler. Der Aufbau des Lesekopfs erinnert an ein Sandwich: Zwei magnetische Schichten sind durch eine dünne, nicht magnetische Schicht getrennt. Die parallele oder antiparallele Ausrichtung der beiden Schichten als Folge der gegensätzlichen ausgerichteten magnetischen Bits auf der Festplatte führt zu kleinen oder großen GMR-Werten. Letztere stellen dann die Bits „0“ oder „1“ der klassischen Datenspeicherung dar. „Die magnetischen Sandwich-Leseköpfe können aufgrund des Riesen-Magnetwiderstands-Effekts sehr viel kleiner gebaut werden als herkömmliche Leseköpfe. Dadurch wurde die Speicherdichte von Festplatten dramatisch erhöht“, betont Güntherodt.

von Ilse Trautwein

Infos: Univ.-Prof. Dr. Gernot Güntherodt, Lehrstuhl für Experimentalphysik II A der RWTH Aachen, 0241/80 27055, Gernot.Guentherodt@pyhsik.rwth-aachen.de

Media Contact

Thomas von Salzen idw

Weitere Informationen:

http://www.rwth-aachen.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer