Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meilenstein: Frequenzmessung auf 17 Dezimalstellen genau

07.03.2008
Forscher der Universität Innsbruck an Weltrekord-Experiment beteiligt

Einen neuen Weltrekord bei der Präzisionsmessung von optischen Frequenzen haben Wissenschaftler des National Institute of Standards and Technology (NIST) in Boulder, USA, aufgestellt. Einen wesentlichen Beitrag dazu hat der Experimentalphysiker Dr. Piet O. Schmidt geleistet, der seit drei Jahren an der Universität Innsbruck forscht. Die Forscher berichten über ihren bahnbrechenden Erfolg in der Fachzeitschrift Science.

Der Lauf der Zeit kann schon heute extrem genau gemessen werden. Eine Reihe von Cäsium-Atomuhren auf der ganzen Welt geben uns die Sekunde vor. Die modernsten dieser Uhren zeigen heute eine Abweichung von nur wenigen Sekunden in 300 Millionen Jahren. Den Physikern ist das aber noch nicht genau genug. Sie forschen an optischen Atomuhren, die mit Lichtfrequenzen arbeiten und noch einmal um den Faktor 1.000 genauer sein sollen. Wissenschaftlern am National Institute of Standards and Technology (NIST) in Boulder, USA, ist nun ein großer Durchbruch gelungen.

„Meine Kollegen am NIST haben die Genauigkeit von zwei optischen Atomuhren um einen Faktor 10 gegenüber den besten bisherigen Uhren verbessert. Um das zu beweisen, wurden die Frequenzen der beiden Uhren miteinander verglichen und eine Abweichung von nur 5,2 x 10 hoch -17 festgestellt. Das ist, wie wenn man den Abstand der Erde zur Sonne auf ein Zehntel des Durchmessers eines Haares bestimmen könnte, und damit ein Weltrekord“, freut sich Dr. Piet Schmidt, der als Postdoc das Experiment in Boulder mit aufgebaut und erste Messungen daran durchgeführt hat. Heute forscht der START-Preisträger am Institut für Experimentalphysik der Universität Innsbruck.

... mehr zu:
»Atomuhr »NIST
Eine quantenlogische Uhr
Die Wissenschaftler in den USA benutzten einzelne Quecksilber- und Aluminium-Ionen in ihren optischen Atomuhren. „Das Aluminium-Ion hat einen sehr schmalen Uhrenübergang, der sich zudem als besonders resistent gegenüber äußeren Einflüssen gezeigt hat. Das Ion kann aber nur sehr schwer kontrolliert werden“, sagt Piet Schmidt. „Wir verwenden dafür Techniken, die auch für den Bau des Quantencomputers zum Einsatz kommen.“ Dabei wird dem Aluminium-Ion ein Beryllium-Ion zur Seite gestellt, das als eine Art Vermittler dient und sowohl bei der Laserkühlung als auch bei der Messung hilft. Diese so genannte Quantenlogik-Spektroskopie wurde von Piet Schmidt und seinen Kollegen am NIST vor drei Jahren zum ersten Mal realisiert. Das Quecksilber-Ion kann hingegen direkt mit Lasern gekühlt und ausgelesen werden. Daher kommt hier die übliche Quantensprungspektroskopie zum Einsatz.

Da die Ionen nicht kontinuierlich Signale für die Messung liefern, werden sie mit hochstabilen Lasern gekoppelt, die wie ein Schwungrad die Lichtfrequenz erhalten und durch regelmäßige Messungen an den Ionen immer wieder geeicht werden. Die Wissenschaftler können dann die Frequenzen der beiden Atomuhren mit Hilfe eines optischen Frequenzkamms vergleichen. Diese Messungen sind allerdings extrem sensibel. So müssen zum Beispiel Effekte der Gravitation berücksichtigt werden. Der Abstand der beiden Atomuhren vom Erdmittelpunkt darf um nicht mehr als 10 cm differieren. Dies eröffnet aber auch neue Perspektiven für die Forscher. So könnten die Atomuhren in Zukunft auch zur Untersuchung des Gravitationsfelds der Erde verwendet werden.

Sind Naturkonstanten wirklich konstant?
„Besonders interessant sind aber Messungen über längere Zeiträume hinweg“, erklärt Schmidt. „Damit können wir nämlich überprüfen, ob sich fundamentale Naturkonstanten langfristig ändern. Und das wäre natürlich spektakulär, denn die gängige Theorie sieht so etwas nicht vor.“ Die Forscher in Boulder konnten mit ihren Messungen aber beruhigen: Die Feinstrukturkonstante α änderte sich über die Laufzeit von einem Jahr nicht signifikant. Genau hier setzt Piet Schmidt auch mit seinen neuen Experimenten in Innsbruck an. Er möchte die Änderung von Naturkonstanten weiter untersuchen und Messdaten generieren, die Astrophysikern helfen sollen, ihre Datenauswertung zu verbessern. Denn es gibt astrophysikalische Beobachtungen, die andeuten, dass sich die Feinstrukturkonstante α bei der Entwicklung des Kosmos verändert hat. „Wenn das neue Haus der Physik in Innsbruck gebaut wird, könnten wir dort dafür ähnliche Bedingungen schaffen, wie es sie in Boulder gibt“, hofft Piet Schmidt auf Unterstützung für seine Pläne.
START-Preisträger
Piet Schmidt wurde 1970 in Schwäbisch Hall in Deutschland geboren. Er studierte an der Universität Konstanz Physik und verbrachte ein Auslandsjahr an der Portland State University in den USA. Sein Doktoratsstudium absolvierte er zunächst in Konstanz und dann an der Universität Stuttgart, wo er 2003 promovierte. Bis 2005 arbeitete er als Postdoc in der Arbeitsgruppe von David Wineland und Jim Bergquist am National Institute of Standards and Technology (NIST) in Boulder, USA. Seither ist er Assistent in der Arbeitsgruppe von Univ.-Prof. Dr. Rainer Blatt an der Universität Innsbruck. Im Juni 2006 wurde er mit dem höchsten Preis für Nachwuchswissenschaftler in Österreich, dem START-Preis, ausgezeichnet.

Eine Animation zum Experiment finden Sie auf der NIST-Homepage unter: http://www.nist.gov/public_affairs/releases/logic_clock/logic_clock.html

Publikation: „Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place“, Rosenband T, Hume DB, Schmidt PO, Chou CW, Brusch A, Lorini L, Oskay WH, Drullinger RE, Fortier TM, Stalnaker JE, Diddams SA, Swann WC, Newbury NR, Itano WM, Wineland DJ, Bergquist JC, Science Express am 6. März 2008.

Zur Quantenlogik-Spektroskopie: „Spectroscopy Using Quantum Logic“, Schmidt PO, Rosenband T, Langer C, Itano WM, Bergquist JC, Wineland DJ, Science 309, 749 (2005). [http://dx.doi.org/10.1126/science.1114375]

Kontakt:
Dr. Piet O. Schmidt
Institut für Experimentalphysik, Universität Innsbruck
Technikerstraße 25, 6020 Innsbruck, Österreich
Tel.: +43 512 507-6398 oder -6372
Fax: +43 512 507-2921
E-Mail: piet.schmidt@uibk.ac.at

Dr. Piet O. Schmidt | IQOQI
Weitere Informationen:
http://www.iqoqi.at/media/download/
http://www.nist.gov/public_affairs/releases/logic_clock/logic_clock.html
http://www.quantumoptics.at/

Weitere Berichte zu: Atomuhr NIST

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik