Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichte Momente mit Kühleffekt - Quantensprünge im mechanischen System gesucht

06.03.2008
Licht wird nicht nur von Materie absorbiert oder gestreut, sondern übt auch mechanische Kräfte aus. So kann der Strahlungsdruck des Lichts eine kleine "Lichtmühle" drehen, ein "Sonnensegel" im Weltall in Bewegung setzen oder auch den Schweif eines Kometen wegdrücken.

Besonders starke Effekte werden sichtbar, wenn das Licht in optischen Resonatoren eingesperrt wird. Darin sind zwei Spiegel so angeordnet, dass Licht möglichst oft zwischen ihnen reflektiert wird, was die Lichtintensität um ein Vielfaches erhöht. Ist einer der beiden Spiegel etwa auf einen Schwingbalken montiert und damit beweglich, kann er sogar vom Lichtdruck beeinflusst werden.

LMU-Forscher haben bereits 2004 allein mit Hilfe der Lichtkräfte einen solchen Balken auf eine Temperatur abgekühlt, die um einen Faktor 20 unter der Raumtemperatur lag. Ein internationales Team um die experimentell forschende Gruppe von Jack Harris und den Theoretiker Steve Girvin von der US-amerikanischen Yale University konnte jetzt die optischen und mechanischen Eigenschaften eines derartigen experimentellen Aufbaus entscheidend verbessern.

Ebenfalls an dem Projekt beteiligt war der Theoretiker Dr. Florian Marquardt vom Department für Physik der Ludwig-Maximilians-Universität (LMU) München. Wie die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift "Nature" berichten, wurde dank des neuen Systems ein Kühleffekt von fast einem Faktor Fünfzigtausend nachgewiesen: Das ist ein neuer Rekord und ein wichtiger Schritt auf dem Weg, künftig "Quantensprünge" der Schwingungszustände makroskopischer Objekte zu messen.

... mehr zu:
»Kühleffekt »Resonator

"Die Wechselwirkung zwischen Licht und Materie hat die Entwicklung der Physik seit ihren Anfängen begleitet", berichtet Marquardt. "Dabei weiß man auch schon lange, dass Licht selbst mechanische Kräfte ausüben kann, die in einem optischen Resonator verstärkt werden. Solche Systeme werden seit den 70er Jahren untersucht. Erst in jüngster Zeit aber werden kleinere, leichter schwingende Aufbauten genutzt, wie sie in der Mikro- und Nanophysik gefertigt werden. In diesen Systemen sind die Lichteffekte besonders ausgeprägt."

In der vorliegenden Arbeit zeigt Marquardt nun in Zusammenarbeit mit Forschern der US-amerkanischen Yale University, wie ein erweiterter Aufbau zu deutlich verbesserten Ergebnissen führen kann - und so völlig neue Perspektiven eröffnet. So könnten damit möglicherweise bald schon makroskopische Objekte erstmals in den quantenmechanischen Zustand tiefster Schwingungsenergie abgekühlt werden, um dann etwa die Schwingungsquantenzahl zu messen. Die Quantenmechanik untersucht und beschreibt Teilchen auf atomarer und subatomarer Ebene, die sich in ihren Eigenschaften und ihrem Verhalten vielfach unterscheiden von den makroskopischen Objekten der Alltagswelt.

Bei dem neuen Ansatz wird eine halbtransparente Membran in die Mitte des optischen Resonators eingeführt. Dessen optische Elemente, also die Spiegel, sind dann - anders als bei herkömmlichen Systemen - von dem mechanischen Element, der Membran, getrennt. "Damit erzielen wir eine um Größenordnung verbesserte Qualität optischer und mechanischer Eigenschaften", so Marquardt. "In der Praxis bedeutet das, dass wir selbst mit dem jetzt schon existierenden Aufbau einen Kühleffekt von fast dem Faktor Fünfzigtausend nachweisen konnten. Noch wichtiger als dieser Rekord und die technischen Verbesserungen ist aber die Tatsache, dass dieser Aufbau im Prinzip dazu verwendet werden kann, gequantelte Schwingungszustände eines makroskopischen Objekts zu messen, in diesem Fall ist das die schwingende Membran."

Es sind die besonderen Eigenschaften des Aufbaus, die dies ermöglichen: Im optischen Resonator bildet sich durch die vielfache Reflektion des Lichts eine stehende Lichtwelle aus. Je nachdem, an welcher Position dieser stehenden Welle sich die Membran genau befindet, ist ihr Effekt auf die optische Resonanzfrequenz verschieden. Der Effekt ist am stärksten, wenn sie sich an einem Intensitätsmaximum befindet, und am schwächsten an einem Minimum.

Mathematisch ausgedrückt: In der Nähe eines Maximums oder Minimums hängt die optische Resonanzfrequenz nicht mehr direkt linear von der Auslenkung der schwingenden Membran ab, sondern vom Quadrat der Auslenkung. Im Zeitmittel liefert das Quadrat der Auslenkung ein Maß für die Energie der Membran, was dann auf optischem Wege gemessen werden kann. In der quantenmechanischen Analyse dieses Messprozesses übersetzt sich die Energie direkt in die Zahl der in der Membran gespeicherten Schwingungsquanten, so dass diese direkt nachgewiesen werden könnte. "Bis zur Realisierung einer solchen Messung sind aber noch weitere Verbesserungen am Aufbau und am Abkühlverfahren notwendig", betont Marquardt.

"Trotzdem ist das eine aufregende Perspektive, weil es zum ersten Mal ermöglichen würde, 'Quantensprünge' zwischen den Schwingungszuständen eines makroskopischen Objekts nachzuweisen. Experimente dieser Art konnten bisher nur zum Beispiel an einzelnen Elektronen durchgeführt werden, und nicht an Objekten, die viele Billionen Mal schwerer sind."

Auf deutscher Seite wurde das Projekt gefördert vom Sonderforschungsbereich (SFB) 631 "Festkörperbasierte Quanteninformationsverarbeitung: Physikalische Konzepte und Materialaspekte" sowie vom Exzellenzcluster "Nanosystems Initiative Munich" (NIM). Florian Marquardt ist Leiter einer Nachwuchsgruppe im Rahmen des Emmy-Noether-Programms der Deutschen Forschungsgemeinschaft (DFG) am Arnold-Sommerfeld-Zentrum für Theoretische Physik der LMU.

Publikation:
"Strong dispersive coupling of a high finesse cavity to a micromechanical membrane",
J.D. Thompson, B.M. Zwickl, A.M. Jayich, Florian Marquardt, S.M. Girvin & J.G.E. Harris,

Nature, 6. März 2008

Ansprechpartner:
Dr. Florian Marquardt
Lehrstuhl für theoretische Festkörperphysik, Department für Physik der LMU
Tel.: 089 / 2180 - 4591
Fax: 089 / 2180 - 4155
E-Mail: Florian.Marquardt@physik.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.theorie.physik.uni-muenchen.de/~florian/
http://www.uni-muenchen.de/

Weitere Berichte zu: Kühleffekt Resonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten