Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichte Momente mit Kühleffekt - Quantensprünge im mechanischen System gesucht

06.03.2008
Licht wird nicht nur von Materie absorbiert oder gestreut, sondern übt auch mechanische Kräfte aus. So kann der Strahlungsdruck des Lichts eine kleine "Lichtmühle" drehen, ein "Sonnensegel" im Weltall in Bewegung setzen oder auch den Schweif eines Kometen wegdrücken.

Besonders starke Effekte werden sichtbar, wenn das Licht in optischen Resonatoren eingesperrt wird. Darin sind zwei Spiegel so angeordnet, dass Licht möglichst oft zwischen ihnen reflektiert wird, was die Lichtintensität um ein Vielfaches erhöht. Ist einer der beiden Spiegel etwa auf einen Schwingbalken montiert und damit beweglich, kann er sogar vom Lichtdruck beeinflusst werden.

LMU-Forscher haben bereits 2004 allein mit Hilfe der Lichtkräfte einen solchen Balken auf eine Temperatur abgekühlt, die um einen Faktor 20 unter der Raumtemperatur lag. Ein internationales Team um die experimentell forschende Gruppe von Jack Harris und den Theoretiker Steve Girvin von der US-amerikanischen Yale University konnte jetzt die optischen und mechanischen Eigenschaften eines derartigen experimentellen Aufbaus entscheidend verbessern.

Ebenfalls an dem Projekt beteiligt war der Theoretiker Dr. Florian Marquardt vom Department für Physik der Ludwig-Maximilians-Universität (LMU) München. Wie die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift "Nature" berichten, wurde dank des neuen Systems ein Kühleffekt von fast einem Faktor Fünfzigtausend nachgewiesen: Das ist ein neuer Rekord und ein wichtiger Schritt auf dem Weg, künftig "Quantensprünge" der Schwingungszustände makroskopischer Objekte zu messen.

... mehr zu:
»Kühleffekt »Resonator

"Die Wechselwirkung zwischen Licht und Materie hat die Entwicklung der Physik seit ihren Anfängen begleitet", berichtet Marquardt. "Dabei weiß man auch schon lange, dass Licht selbst mechanische Kräfte ausüben kann, die in einem optischen Resonator verstärkt werden. Solche Systeme werden seit den 70er Jahren untersucht. Erst in jüngster Zeit aber werden kleinere, leichter schwingende Aufbauten genutzt, wie sie in der Mikro- und Nanophysik gefertigt werden. In diesen Systemen sind die Lichteffekte besonders ausgeprägt."

In der vorliegenden Arbeit zeigt Marquardt nun in Zusammenarbeit mit Forschern der US-amerkanischen Yale University, wie ein erweiterter Aufbau zu deutlich verbesserten Ergebnissen führen kann - und so völlig neue Perspektiven eröffnet. So könnten damit möglicherweise bald schon makroskopische Objekte erstmals in den quantenmechanischen Zustand tiefster Schwingungsenergie abgekühlt werden, um dann etwa die Schwingungsquantenzahl zu messen. Die Quantenmechanik untersucht und beschreibt Teilchen auf atomarer und subatomarer Ebene, die sich in ihren Eigenschaften und ihrem Verhalten vielfach unterscheiden von den makroskopischen Objekten der Alltagswelt.

Bei dem neuen Ansatz wird eine halbtransparente Membran in die Mitte des optischen Resonators eingeführt. Dessen optische Elemente, also die Spiegel, sind dann - anders als bei herkömmlichen Systemen - von dem mechanischen Element, der Membran, getrennt. "Damit erzielen wir eine um Größenordnung verbesserte Qualität optischer und mechanischer Eigenschaften", so Marquardt. "In der Praxis bedeutet das, dass wir selbst mit dem jetzt schon existierenden Aufbau einen Kühleffekt von fast dem Faktor Fünfzigtausend nachweisen konnten. Noch wichtiger als dieser Rekord und die technischen Verbesserungen ist aber die Tatsache, dass dieser Aufbau im Prinzip dazu verwendet werden kann, gequantelte Schwingungszustände eines makroskopischen Objekts zu messen, in diesem Fall ist das die schwingende Membran."

Es sind die besonderen Eigenschaften des Aufbaus, die dies ermöglichen: Im optischen Resonator bildet sich durch die vielfache Reflektion des Lichts eine stehende Lichtwelle aus. Je nachdem, an welcher Position dieser stehenden Welle sich die Membran genau befindet, ist ihr Effekt auf die optische Resonanzfrequenz verschieden. Der Effekt ist am stärksten, wenn sie sich an einem Intensitätsmaximum befindet, und am schwächsten an einem Minimum.

Mathematisch ausgedrückt: In der Nähe eines Maximums oder Minimums hängt die optische Resonanzfrequenz nicht mehr direkt linear von der Auslenkung der schwingenden Membran ab, sondern vom Quadrat der Auslenkung. Im Zeitmittel liefert das Quadrat der Auslenkung ein Maß für die Energie der Membran, was dann auf optischem Wege gemessen werden kann. In der quantenmechanischen Analyse dieses Messprozesses übersetzt sich die Energie direkt in die Zahl der in der Membran gespeicherten Schwingungsquanten, so dass diese direkt nachgewiesen werden könnte. "Bis zur Realisierung einer solchen Messung sind aber noch weitere Verbesserungen am Aufbau und am Abkühlverfahren notwendig", betont Marquardt.

"Trotzdem ist das eine aufregende Perspektive, weil es zum ersten Mal ermöglichen würde, 'Quantensprünge' zwischen den Schwingungszuständen eines makroskopischen Objekts nachzuweisen. Experimente dieser Art konnten bisher nur zum Beispiel an einzelnen Elektronen durchgeführt werden, und nicht an Objekten, die viele Billionen Mal schwerer sind."

Auf deutscher Seite wurde das Projekt gefördert vom Sonderforschungsbereich (SFB) 631 "Festkörperbasierte Quanteninformationsverarbeitung: Physikalische Konzepte und Materialaspekte" sowie vom Exzellenzcluster "Nanosystems Initiative Munich" (NIM). Florian Marquardt ist Leiter einer Nachwuchsgruppe im Rahmen des Emmy-Noether-Programms der Deutschen Forschungsgemeinschaft (DFG) am Arnold-Sommerfeld-Zentrum für Theoretische Physik der LMU.

Publikation:
"Strong dispersive coupling of a high finesse cavity to a micromechanical membrane",
J.D. Thompson, B.M. Zwickl, A.M. Jayich, Florian Marquardt, S.M. Girvin & J.G.E. Harris,

Nature, 6. März 2008

Ansprechpartner:
Dr. Florian Marquardt
Lehrstuhl für theoretische Festkörperphysik, Department für Physik der LMU
Tel.: 089 / 2180 - 4591
Fax: 089 / 2180 - 4155
E-Mail: Florian.Marquardt@physik.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.theorie.physik.uni-muenchen.de/~florian/
http://www.uni-muenchen.de/

Weitere Berichte zu: Kühleffekt Resonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics