Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichte Momente mit Kühleffekt - Quantensprünge im mechanischen System gesucht

06.03.2008
Licht wird nicht nur von Materie absorbiert oder gestreut, sondern übt auch mechanische Kräfte aus. So kann der Strahlungsdruck des Lichts eine kleine "Lichtmühle" drehen, ein "Sonnensegel" im Weltall in Bewegung setzen oder auch den Schweif eines Kometen wegdrücken.

Besonders starke Effekte werden sichtbar, wenn das Licht in optischen Resonatoren eingesperrt wird. Darin sind zwei Spiegel so angeordnet, dass Licht möglichst oft zwischen ihnen reflektiert wird, was die Lichtintensität um ein Vielfaches erhöht. Ist einer der beiden Spiegel etwa auf einen Schwingbalken montiert und damit beweglich, kann er sogar vom Lichtdruck beeinflusst werden.

LMU-Forscher haben bereits 2004 allein mit Hilfe der Lichtkräfte einen solchen Balken auf eine Temperatur abgekühlt, die um einen Faktor 20 unter der Raumtemperatur lag. Ein internationales Team um die experimentell forschende Gruppe von Jack Harris und den Theoretiker Steve Girvin von der US-amerikanischen Yale University konnte jetzt die optischen und mechanischen Eigenschaften eines derartigen experimentellen Aufbaus entscheidend verbessern.

Ebenfalls an dem Projekt beteiligt war der Theoretiker Dr. Florian Marquardt vom Department für Physik der Ludwig-Maximilians-Universität (LMU) München. Wie die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift "Nature" berichten, wurde dank des neuen Systems ein Kühleffekt von fast einem Faktor Fünfzigtausend nachgewiesen: Das ist ein neuer Rekord und ein wichtiger Schritt auf dem Weg, künftig "Quantensprünge" der Schwingungszustände makroskopischer Objekte zu messen.

... mehr zu:
»Kühleffekt »Resonator

"Die Wechselwirkung zwischen Licht und Materie hat die Entwicklung der Physik seit ihren Anfängen begleitet", berichtet Marquardt. "Dabei weiß man auch schon lange, dass Licht selbst mechanische Kräfte ausüben kann, die in einem optischen Resonator verstärkt werden. Solche Systeme werden seit den 70er Jahren untersucht. Erst in jüngster Zeit aber werden kleinere, leichter schwingende Aufbauten genutzt, wie sie in der Mikro- und Nanophysik gefertigt werden. In diesen Systemen sind die Lichteffekte besonders ausgeprägt."

In der vorliegenden Arbeit zeigt Marquardt nun in Zusammenarbeit mit Forschern der US-amerkanischen Yale University, wie ein erweiterter Aufbau zu deutlich verbesserten Ergebnissen führen kann - und so völlig neue Perspektiven eröffnet. So könnten damit möglicherweise bald schon makroskopische Objekte erstmals in den quantenmechanischen Zustand tiefster Schwingungsenergie abgekühlt werden, um dann etwa die Schwingungsquantenzahl zu messen. Die Quantenmechanik untersucht und beschreibt Teilchen auf atomarer und subatomarer Ebene, die sich in ihren Eigenschaften und ihrem Verhalten vielfach unterscheiden von den makroskopischen Objekten der Alltagswelt.

Bei dem neuen Ansatz wird eine halbtransparente Membran in die Mitte des optischen Resonators eingeführt. Dessen optische Elemente, also die Spiegel, sind dann - anders als bei herkömmlichen Systemen - von dem mechanischen Element, der Membran, getrennt. "Damit erzielen wir eine um Größenordnung verbesserte Qualität optischer und mechanischer Eigenschaften", so Marquardt. "In der Praxis bedeutet das, dass wir selbst mit dem jetzt schon existierenden Aufbau einen Kühleffekt von fast dem Faktor Fünfzigtausend nachweisen konnten. Noch wichtiger als dieser Rekord und die technischen Verbesserungen ist aber die Tatsache, dass dieser Aufbau im Prinzip dazu verwendet werden kann, gequantelte Schwingungszustände eines makroskopischen Objekts zu messen, in diesem Fall ist das die schwingende Membran."

Es sind die besonderen Eigenschaften des Aufbaus, die dies ermöglichen: Im optischen Resonator bildet sich durch die vielfache Reflektion des Lichts eine stehende Lichtwelle aus. Je nachdem, an welcher Position dieser stehenden Welle sich die Membran genau befindet, ist ihr Effekt auf die optische Resonanzfrequenz verschieden. Der Effekt ist am stärksten, wenn sie sich an einem Intensitätsmaximum befindet, und am schwächsten an einem Minimum.

Mathematisch ausgedrückt: In der Nähe eines Maximums oder Minimums hängt die optische Resonanzfrequenz nicht mehr direkt linear von der Auslenkung der schwingenden Membran ab, sondern vom Quadrat der Auslenkung. Im Zeitmittel liefert das Quadrat der Auslenkung ein Maß für die Energie der Membran, was dann auf optischem Wege gemessen werden kann. In der quantenmechanischen Analyse dieses Messprozesses übersetzt sich die Energie direkt in die Zahl der in der Membran gespeicherten Schwingungsquanten, so dass diese direkt nachgewiesen werden könnte. "Bis zur Realisierung einer solchen Messung sind aber noch weitere Verbesserungen am Aufbau und am Abkühlverfahren notwendig", betont Marquardt.

"Trotzdem ist das eine aufregende Perspektive, weil es zum ersten Mal ermöglichen würde, 'Quantensprünge' zwischen den Schwingungszuständen eines makroskopischen Objekts nachzuweisen. Experimente dieser Art konnten bisher nur zum Beispiel an einzelnen Elektronen durchgeführt werden, und nicht an Objekten, die viele Billionen Mal schwerer sind."

Auf deutscher Seite wurde das Projekt gefördert vom Sonderforschungsbereich (SFB) 631 "Festkörperbasierte Quanteninformationsverarbeitung: Physikalische Konzepte und Materialaspekte" sowie vom Exzellenzcluster "Nanosystems Initiative Munich" (NIM). Florian Marquardt ist Leiter einer Nachwuchsgruppe im Rahmen des Emmy-Noether-Programms der Deutschen Forschungsgemeinschaft (DFG) am Arnold-Sommerfeld-Zentrum für Theoretische Physik der LMU.

Publikation:
"Strong dispersive coupling of a high finesse cavity to a micromechanical membrane",
J.D. Thompson, B.M. Zwickl, A.M. Jayich, Florian Marquardt, S.M. Girvin & J.G.E. Harris,

Nature, 6. März 2008

Ansprechpartner:
Dr. Florian Marquardt
Lehrstuhl für theoretische Festkörperphysik, Department für Physik der LMU
Tel.: 089 / 2180 - 4591
Fax: 089 / 2180 - 4155
E-Mail: Florian.Marquardt@physik.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.theorie.physik.uni-muenchen.de/~florian/
http://www.uni-muenchen.de/

Weitere Berichte zu: Kühleffekt Resonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz