Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wendelstein 7-X erreicht ersten Meilenstein

04.03.2008
Mit dem Fertigstellen der ersten beiden Halbmodule der Fusionsanlage Wendelstein 7-X erreichte der stufenweise Zusammenbau des Großexperiments im Teilinstitut Greifswald des Max-Planck-Instituts für Plasmaphysik (IPP) plangemäß den ersten Meilenstein: Zwei Zehntel des inneren Kerns der Anlage sind damit fertig gestellt und werden nun zusammengefügt. Die industrielle Herstellung der wesentlichen Bauteile für Wendelstein 7-X ist nahezu abgeschlossen. Noch rund sechs Jahre wird der Aufbau der komplexen Anlage dauern.

Ziel der Fusionsforschung ist es - ähnlich wie die Sonne - aus der Verschmelzung von Atomkernen Energie zu gewinnen. Um das Fusionsfeuer zu zünden, muss in einem späteren Kraftwerk der Brennstoff, ein Wasserstoffplasma, in Magnetfeldern eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Wendelstein 7-X, die nach der Fertigstellung weltweit größte Fusionsanlage vom Typ Stellarator, hat die Aufgabe, die Kraftwerkseignung dieses Bautyps zu untersuchen. Mit bis zu 30 Minuten langen Entladungen soll sie seine wesentliche Eigenschaft vorführen, die Fähigkeit zum Dauerbetrieb.

Die Bauteile
In Kürze abgeschlossen wird die Fertigung des Kernstücks der Anlage - 50 supraleitende, etwa 3,5 Meter hohe Magnetspulen. Ihre bizarren Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen: Sie sollen einen besonders stabilen und wärmeisolierenden magnetischen Käfig für das Plasma erzeugen. Mit flüssigem Helium auf Supraleitungstemperatur nahe dem absoluten Nullpunkt abgekühlt, verbrauchen sie nach dem Einschalten kaum Energie. Hersteller ist ein deutsch-italienisches Firmenkonsortium unter Leitung der Babcock Noell GmbH in Würzburg und ASG Superconductors S.p.A. in Genua.

Um das Magnetfeld verändern zu können, wird den Stellarator-Spulen ein zweiter Satz von 20 flachen, ebenfalls supraleitenden Spulen überlagert. Alle 20 Spulen sind inzwischen vom Hersteller, der Firma Tesla/Großbritannien, ausgeliefert. Eine massive ringförmige Stützstruktur, bereits zur Hälfte fertig gestellt von der spanischen Firma ENSA, wird die Spulen trotz der hohen Magnetkräfte exakt in Position halten.

... mehr zu:
»Plasma »Plasmagefäß »Wendelstein

Den gesamten Spulenkranz wird eine wärmeisolierende Außenhülle von 16 Metern Durchmesser umschließen, der Kryostat. Zwei seiner insgesamt fünf Teile sind von MAN DWE in Deggendorf bereits gefertigt (Abb. 1). Eine Kälteanlage stellt später 5000 Watt Heliumkälte bereit, um die Magnete und ihre Abstützung auf Supraleitungstemperatur zu kühlen. Im Inneren des Spulenkranzes liegt das Plasmagefäß, das in seiner eigenwilligen Form dem verwundenen Plasmaschlauch angepasst ist. In 20 Einzelteilen wurde es ebenfalls bei MAN DWE hergestellt. Durch seine mehr als 250 Löcher soll das Plasma später beobachtet und geheizt sowie das Plasmagefäß gekühlt werden. Ebenso viele Stutzen, gefertigt und ausgeliefert von der Schweizer Romabau Gerinox, verbinden diese Öffnungen mit der Außenwand des Kryostaten.

Der erste Meilenstein
Die ganze Anlage wird aus fünf nahezu baugleichen Modulen aufgebaut, die vormontiert und erst in der Experimentierhalle kreisförmig zusammengesetzt werden. Beendet ist inzwischen die Montage der ersten beiden Modulhälften - der erste Meilenstein des insgesamt 29-stufigen Zusammenbaus ist damit plangemäß erreicht:

In die beiden Vormontagestände Ia und Ib wurde dazu jeweils ein Teilstück des Plasmagefäßes hinein gehoben und je eine der sechs Tonnen schweren Magnetspulen mit einem Spezialgreifer vorsichtig über nur Millimeter breite Zwischenräume auf das Gefäßsegment gefädelt. Erst jetzt konnte man jeweils einen zweiten Plasmagefäß-Sektor anschweißen und die Wärmeisolation an den Nahtstellen vervollständigen. Diese Superisolation - passgenau gefertigte glasfaserverstärkte Kunststoff-Paneele, gefüttert mit mehreren Lagen Aluminium-beschichteter Kapton-Folie und Glasseide - trennt die tiefkalten Magnetspulen von ihrer warmen Umgebung. Anschließend wurden jeweils vier weitere Stellaratorspulen und zwei der Zusatzspulen von vorne und hinten auf das Gefäßstück gefädelt und auf eigenen Montage-Stützen geometrisch exakt ausgerichtet. Die Spulen waren schließlich mit einem Segment des Tragrings zu verschrauben. Nach vielen weiteren Zusatzarbeiten und zahlreichen Kontrollvermessungen waren dann die ersten beiden Halbmodule fertig (Abb. 2) und wurden nacheinander in einem speziellen Lastgeschirr in den zweiten Montagestand gehoben - am 28. Februar war damit der erste Montage-Meilenstein erreicht.

Während in den Vormontageständen Ia und Ib nun fast schon routinemäßig die nächsten zwei Halbmodule entstehen, warten im Vormontagestand II neue Herausforderungen: Wenn hier die beiden Teile des Tragrings ausgerichtet und miteinander verschraubt sind, die Plasmagefäß-Teile verschweißt und die thermische Isolation an der Nahtstelle geschlossen, ist das erste der fünf Module im Rohbau fertig. Nun müssen die Leiter für die elektrische Verschaltung der Spulen angebaut werden - ein recht schwieriger Arbeitsgang. Die steifen, bis zu 14 Meter langen Supraleiter, die vom Forschungszentrum Jülich hergestellt werden, sind bereits in die richtige Form gebogen. 24 Stück der unhandlichen, aber empfindlichen Leiter werden pro Modul gebraucht. Nach dem elektrischen Verbinden und Verschweißen der Supraleiter werden die Verbindungsstellen hochspannungsfest isoliert und ihre Heliumdichtigkeit kontrolliert. Parallel dazu läuft - auf mittlerweile engstem Raum - die Verrohrung für die Helium-Kühlung der Spulen. Alles ist auf Leckdichtigkeit zu prüfen. Sind nun noch Sensoren und Messkabel verlegt, kann - gemäß Planung nach rund 25 Wochen Bauzeit - das erste Modul den Montagestand II verlassen.

In der Experimenthalle
Das fertige Modul wird in der Experimentierhalle auf dem dritten Montagestand in die Unterschale des Außengefäßes hinein gehoben; Verbindungen und Stützen werden angebracht. Das mittlerweile 120 Tonnen schwere Bauteil wird nun auf das eigentliche Maschinenfundament gehoben und zusätzlich auf Hilfsstützen abgestellt. Die Oberschale des Außengefäßes wird aufgesetzt und verschweißt. Rund 60 Stutzen, die Plasma- und Außengefäß durch den kalten Spulenbereich hindurch verbinden, sind nun samt ihrer Thermoisolation einzubauen.

Es folgen die Inneneinbauten im Plasmagefäß, insbesondere die zahlreichen Teile des Divertors. Mit seinen Prallplatten werden später die Verunreinigungen und ein Teil der Wärmeenergie aus dem Plasma abgeführt. Den Rest der Energie fängt der Wandschutz ab, Stahlpaneele bzw. ein mit Graphit-Ziegeln armiertes Hitzeschild. Ein Großteil der Komponenten - darunter Pumpen, Hitzeschild und Divertormodule - entsteht zur Zeit in den Zentralen Technischen Einrichtungen des IPP in Garching; die Prallplatten, Regelspulen und Stahlpaneele werden von Industriebetrieben hergestellt.

Bis alle fünf Module in der Experimentierhalle stehen, sind alle Arbeitsschritte fünfmal zu durchlaufen. Schließlich müssen die fünf Großkomponenten noch verbunden werden: Die Nahtstellen von Plasma- und Außengefäß sind zu schließen, die Magnete mit Strom- und Heliumversorgung zu verbinden. Es folgen die Hauptstromverbindungen, Kühlverrohrungen und immer wieder Kontrollvermessungen und Dichtigkeitsprüfungen: Die Basismaschine ist nun fertig.

Parallel dazu wird das Mikrowellen-System zum Aufheizen des Plasmas aufgebaut. Die Gesamtverantwortung hierfür hat das Forschungszentrum Karlsruhe übernommen, die Übertragungsleitungen betreuen Experten der Universität Stuttgart. Hinzu kommen die Versorgungseinrichtungen für elektrische Energie und Kühlung, die Maschinensteuerung und schließlich die zahlreichen Messgeräte, die das Verhalten des Plasmas diagnostizieren sollen. Verläuft alles nach Plan, sollte Wendelstein 7-X in rund sechs Jahren in Betrieb gehen.

Isabella Milch | idw
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: Plasma Plasmagefäß Wendelstein

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht VLT auf der Suche nach Planeten im Sternsystem Alpha Centauri
10.01.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Feinstaub weckt schlafende Viren in der Lunge

16.01.2017 | Biowissenschaften Chemie

Energieeffizienter Gebäudebetrieb: Monitoring-Plattform MONDAS identifiziert Einsparpotenzial

16.01.2017 | Messenachrichten

Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?

16.01.2017 | Biowissenschaften Chemie