Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bloch-Oszillationen in Quantengas beobachtet

29.02.2008
Ein Team um START-Preisträger Hanns-Christoph Nägerl von der Universität Innsbruck konnte die Wechselwirkung zwischen Atomen in einem ultrakalten Quantengas erfolgreich unterdrücken und damit ein quantenmechanisches Phänomen, so genannte Bloch-Oszillationen, erstmals langfristig und mit hoher Präzision beobachten. Die Forscher berichten darüber in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters.

Schon in den Anfangsjahren der Quantenmechanik sagten Theoretiker ein Phänomen voraus, das verblüffte: Wird an einen idealen, störungsfreien Draht eine Spannung angelegt, fließt kein Strom – denn die Elektronen im Kristallgitter eines perfekten Festkörpers schwingen unter dem Einfluss einer konstanten Kraft um eine Ruhelage ohne sich fort zu bewegen. Diese Schwingung wurde nach einem der Begründer der Festkörperphysik, dem Schweizer Felix Bloch, benannt. Erstmals experimentell beobachtet wurden die Bloch-Oszillationen in den 1990er-Jahren in speziellen Halbleiterstrukturen.

10 Sekunden lang beobachtet

Die Forschungsgruppe um a.Univ.-Prof. Dr. Hanns-Christoph Nägerl hat nun ein ultrakaltes Quantengas aus Cäsiumatomen als Modellsystem für die Untersuchung der Bloch-Oszillationen verwendet. „Wir mussten dazu die Wechselwirkung zwischen den Teilchen aufheben“, erklärt Nägerl, „weil sie sich sonst miteinander stoßen und die Schwingung aus dem Tritt kommt.“ Die Forscher legten dazu ein optisches Gitter über die ultrakalten Atome und nutzten eine so genannte Feshbach-Resonanz, um die störende Wechselwirkung zwischen den Teilchen zu unterdrücken. „Wir sind bisher die Einzigen weltweit, die das mit dieser Perfektion tun können“, zeigt sich Nägerl stolz. Die Atome werden durch die Schwerkraft beschleunigt und erhalten einen Impuls. An einem bestimmten Punkt werden sie abrupt abgebremst und zurückgeworfen. Die Forscher messen die Geschwindigkeit, mit der die Teilchen sich bewegen. „Aus der Impulsverteilung können wir die Bloch-Oszillationen mit großer Genauigkeit ablesen“, freut sich der Experimentalphysiker. „Das Besondere an unserem Experiment ist, dass wir dieses Phänomen über zehn Sekunden lang beobachten können. Das ist in der Welt der Elementarteilchen eine halbe Ewigkeit.“

START-Preis zeitigt Ergebnisse

Anwendung könnte dieses Experiment in der noch genaueren Bestimmung von Naturkonstanten oder von fundamentalen physikalischen Größen wie der Gravitation finden. „Unsere Hoffnung ist es, dass damit Größen wie die Feinstrukturkonstante α mit bisher noch nicht gekannter Genauigkeit gemessen werden können“, so Prof. Hanns-Christoph Nägerl, der im Jahre 2003 mit dem höchsten österreichischen Nachwuchspreis für Wissenschaftler, dem START-Preis, ausgezeichnet wurde. Die aktuelle Arbeit entstand an einem Experiment, das in den vergangenen vier Jahren aufgebaut und aus den vom Bundesministerium für Wissenschaft und Forschung (BMWF) und dem Wissenschaftsfonds (FWF) zur Verfügung gestellten Mitteln des START-Preises finanziert wurde. Durchgeführt wird das Forschungsprojekt am Institut für Experimentalphysik der Universität Innsbruck. Physiker vom European Laboratory for Non-Linear Spectroscopy (LENS) in Florenz führten ein ähnliches Experiment durch, dessen Ergebnisse gemeinsam mit der Innsbrucker Arbeit in der aktuellen Ausgabe von Physical Review Letters veröffentlicht wurde.

Publikation: Control of Interaction-Induced Dephasing of Bloch Oscillations. M. Gustavsson, E. Haller, M. J. Mark, J.G. Danzl, G. Rojas-Kopeinig, H.-C. Nägerl. Phys. Rev. Lett. 100, 080404 (2008)

Kontakt:
a.Univ. Prof. Dr. Hanns-Christoph Nägerl
Institut für Experimentalphysik, Universität Innsbruck
Technikerstraße 25/4, 6020 Innsbruck, Austria
Tel. ++43 512 507 6316 (Büro), 6377 (Labor)
Mobil: ++43 650 6901678
E-mail: Christoph.Naegerl@uibk.ac.at
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Technikerstraße 21a, A-6020 Innsbruck,
Tel. +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at/media/download/
http://link.aps.org/abstract/PRL/v100/e080404
http://exphys.uibk.ac.at/ultracold/

Weitere Berichte zu: Atom Bloch-Oszillationen Quantengas

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten