Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wieviel Kraft braucht man, um ein einzelnes Atom zu bewegen?

25.02.2008
Wissenschaftler aus San Jose, Kalifornien, und Regensburg messen erstmals die Kraft, die zur Herstellung kleinster Strukturen aus einzelnen Atomen nötig ist. Die Messung der treibenden Kräfte der Nano-Manufaktur ist wichtig für die Informationstechnologie.

Wissenschaftlern der International Business Machines Corporation (IBM) und der Universität Regensburg ist es erstmals gelungen, die winzigen Kräfte zu messen, die bei der Konstruktion der kleinstmöglichen künstlichen Strukturen aus einzelnen Atomen wirken (M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl, A. J. Heinrich, Science 319, 1066 (2008)). Diese fundamentalen Messungen sind wichtig für die Identifizierung der geeigneten chemischen Elemente künftiger Schaltelemente mit atomaren Dimensionen: Computerchips, Speicherelemente und andere.

Vor etwa zwanzig Jahren hat Don Eigler, IBM Fellow am Almaden Research Center in San Jose, in einem kleinen Labor, vollgestopft mit technischen Geräten, auf den Hügeln über dem Silicon Valley einen gewaltigen Durchbruch erzielt - die gezielte Anordnung von Atomen, die die kleinsten stabilen Materieteilchen darstellen. Don Eigler und sein Mitarbeiter Erhard Schweizer schrieben I-B-M mit Buchstaben aus einzelnen Atomen des Edelgases Xenon.

Nun konnten Mitarbeiter des gleichen Labors in Kooperation mit der Universität Regensburg die winzigen Kräfte messen, die beim Verschieben der einzelnen Atome wirken. Die Ergebnisse der Studie sind in einem heute (22.2.2008) erscheinenden Artikel des Journals Science publiziert worden.

... mehr zu:
»Atom »Transistor

Das Verständnis der Kräfte, die beim Anordnen einzelner Atome auf Oberflächen wirken, ist grundlegend für die Planung und den Bau jeglicher Konstrukte atomarer Dimensionen. Zum Beispiel braucht man für den Bau eines Motors auf der Nanoskala lose gebundene Atome für bewegliche Teile wie Zahnräder, Hebel und Schalter. Für ein stabiles Gehäuse dagegen wäre es wichtig, Atome zu finden, die fester an der Oberfläche haften und nicht so leicht verschoben werden können.

Das Problem ähnelt den Hürden, die Wissenschaftler und Ingenieure bei der Konstruktion und beim Bau makroskopischer Gebilde überwinden mussten. Es wäre unmöglich, eine moderne Brücke zu bauen ohne eine genaue Kenntnis der Stärke der verwendeten Baustoffe, der wirkenden Kräfte und der gegenseitigen Wechselwirkungen.

"Dieses Resultat zeigt den Weg zu neuen Datenspeicherelementen und wird auch das Verständnis biologischer Strukturen und molekularer Wechselwirkungen verbessern", sagt Gian-Luca Bona, Senior Manager des Bereichs Science & Technology am IBM Almaden Research Center.

In der Veröffentlichung "The Force Needed to Move an Atom on a Surface," zeigen die Wissenschaftler, dass eine Kraft von 210 Piconewton nötig ist, um ein Kobaltatom über eine glatte Platinoberfläche zu bewegen, während sich ein Kobaltatom auf einer Kupferoberfläche schon mit einer Kraft von 17 Piconewton bewegen lässt. Zum Vergleich: Um einen Euro-Cent mit einer Masse von etwa 3 Gramm auf einer Oberfläche zu bewegen, muss eine Kraft von etwa 30 Milliarden Piconewton aufgewendet werden.

Dieses Wissen gewährt ein tieferes Verständnis der Prozesse, die die Grundlage der Nanotechnologie bilden und unterstützt den industriellen Fortschritt auf Gebieten wie der Medizin und der Informationstechnik auf der Nanoskala.

Der wohlbekannte Trend in der Computertechnik - die exponentiell steigende Zahl von Transistoren die auf einer integrierten Schaltung Platz finden - ist allgemein als Moore'sches Gesetz bekannt. Die Verkleinerung der Transistoren verringert den Energieverbrauch und die Kosten bei gleichzeitiger Erhöhung von Geschwindigkeit und Zuverlässigkeit. Die Entwicklung neuer Methoden zur Herstellung kleinster Schaltkreise ist die dringlichste Herausforderung der Computerindustrie.

Wenn man diese Schaltkreise auf die kleinstmögliche Größe bringen könnte - nur einige Atome - könnte man völlig neue Entwürfe und Herstellverfahren ermöglichen. Genau dort füllt die Kenntnis der Kräfte, die bei der atomaren Manipulation wirken, eine bedeutende Wissenslücke: das Verstehen und Steuern des Baus von Nanostrukturen - Atom für Atom.

Wieviel Kraft ist nötig, um ein einzelnes Atom zu bewegen?

Vor einem halben Jahrhundert fragte der Nobelpreisträger Richard Feynman in seinem denkwürdigen Vortrag "There is plenty of room at the bottom", welche Möglichkeiten sich eröffnen würden, wenn man einzelne Atome nach Belieben anordnen könnte. Dieser Traum ist heute Realität, und heute wird atomare Manipulation auf breiter Front in der Wissenschaft angewendet um atomare Strukturen zu bauen, zu verändern und zu vermessen. Die fundamentale Frage: "Welche Kraft brauchen wir, um ein Atom zu verschieben" blieb dagegen bis heute der experimentellen Erforschung verschlossen.

Im heute publizierten Artikel beschreiben die Wissenschaftler den Einsatz eines empfindlichen Rasterkraftmikroskops, um sowohl die Stärke als auch die Richtung der Kraft zu messen, die eine scharfe Spitze beim Verschieben eines Atoms darauf ausübt. Das Team fand heraus, dass die Kraft stark von der chemischen Identität des Atoms und der Unterlage abhängt. Für ein kleines Molekül ergibt sich eine ganz andere Kraft als für ein Metallatom.

Das Kraftmikroskop wurde vor mehr als 20 Jahren von Nobelpreisträger und IBM Fellow Gerd Binnig, IBM Mitarbeiter Christoph Gerber und Stanford-Professor Calvin Quate eingeführt und wurde bereits zur Messung atomarer Kräfte eingesetzt, aber noch nie mit einer derart hohen Präzision. "Es ist erstaunlich, dass die winzigen Kräfte die beim Verschieben der Atome wirken mit einem Kraftsensor gemessen werden können, der im Wesentlichen auf der Quarzstimmgabel beruht, die in jeder handelsüblichen Quarzuhr schwingt", sagt Professor Franz Gießibl von der Universität Regensburg, der Erfinder des Stimmgabel-Kraftsensors.

Kontakt:
Jenny Hunter
IBM Media Relations (Americas)
510-919-5320
jennyh@us.ibm.com
Prof. Dr. Franz J. Gießibl,
Institut für Experimentelle und Angewandte Physik
Universität Regensburg
Universitätsstrasse 31
D-93040 Regensburg
Telefon: 0941 943-2105, Fax: 0941 943-2754
Email: franz.giessibl@physik.uni-regensburg.de

Rudolf F. Dietze | idw
Weitere Informationen:
http://www.uni-regensburg.de/
http://www.nytimes.com/2008/02/22/science/22atom.html?_r=1&oref=slogin

Weitere Berichte zu: Atom Transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE