Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wieviel Kraft braucht man, um ein einzelnes Atom zu bewegen?

25.02.2008
Wissenschaftler aus San Jose, Kalifornien, und Regensburg messen erstmals die Kraft, die zur Herstellung kleinster Strukturen aus einzelnen Atomen nötig ist. Die Messung der treibenden Kräfte der Nano-Manufaktur ist wichtig für die Informationstechnologie.

Wissenschaftlern der International Business Machines Corporation (IBM) und der Universität Regensburg ist es erstmals gelungen, die winzigen Kräfte zu messen, die bei der Konstruktion der kleinstmöglichen künstlichen Strukturen aus einzelnen Atomen wirken (M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl, A. J. Heinrich, Science 319, 1066 (2008)). Diese fundamentalen Messungen sind wichtig für die Identifizierung der geeigneten chemischen Elemente künftiger Schaltelemente mit atomaren Dimensionen: Computerchips, Speicherelemente und andere.

Vor etwa zwanzig Jahren hat Don Eigler, IBM Fellow am Almaden Research Center in San Jose, in einem kleinen Labor, vollgestopft mit technischen Geräten, auf den Hügeln über dem Silicon Valley einen gewaltigen Durchbruch erzielt - die gezielte Anordnung von Atomen, die die kleinsten stabilen Materieteilchen darstellen. Don Eigler und sein Mitarbeiter Erhard Schweizer schrieben I-B-M mit Buchstaben aus einzelnen Atomen des Edelgases Xenon.

Nun konnten Mitarbeiter des gleichen Labors in Kooperation mit der Universität Regensburg die winzigen Kräfte messen, die beim Verschieben der einzelnen Atome wirken. Die Ergebnisse der Studie sind in einem heute (22.2.2008) erscheinenden Artikel des Journals Science publiziert worden.

... mehr zu:
»Atom »Transistor

Das Verständnis der Kräfte, die beim Anordnen einzelner Atome auf Oberflächen wirken, ist grundlegend für die Planung und den Bau jeglicher Konstrukte atomarer Dimensionen. Zum Beispiel braucht man für den Bau eines Motors auf der Nanoskala lose gebundene Atome für bewegliche Teile wie Zahnräder, Hebel und Schalter. Für ein stabiles Gehäuse dagegen wäre es wichtig, Atome zu finden, die fester an der Oberfläche haften und nicht so leicht verschoben werden können.

Das Problem ähnelt den Hürden, die Wissenschaftler und Ingenieure bei der Konstruktion und beim Bau makroskopischer Gebilde überwinden mussten. Es wäre unmöglich, eine moderne Brücke zu bauen ohne eine genaue Kenntnis der Stärke der verwendeten Baustoffe, der wirkenden Kräfte und der gegenseitigen Wechselwirkungen.

"Dieses Resultat zeigt den Weg zu neuen Datenspeicherelementen und wird auch das Verständnis biologischer Strukturen und molekularer Wechselwirkungen verbessern", sagt Gian-Luca Bona, Senior Manager des Bereichs Science & Technology am IBM Almaden Research Center.

In der Veröffentlichung "The Force Needed to Move an Atom on a Surface," zeigen die Wissenschaftler, dass eine Kraft von 210 Piconewton nötig ist, um ein Kobaltatom über eine glatte Platinoberfläche zu bewegen, während sich ein Kobaltatom auf einer Kupferoberfläche schon mit einer Kraft von 17 Piconewton bewegen lässt. Zum Vergleich: Um einen Euro-Cent mit einer Masse von etwa 3 Gramm auf einer Oberfläche zu bewegen, muss eine Kraft von etwa 30 Milliarden Piconewton aufgewendet werden.

Dieses Wissen gewährt ein tieferes Verständnis der Prozesse, die die Grundlage der Nanotechnologie bilden und unterstützt den industriellen Fortschritt auf Gebieten wie der Medizin und der Informationstechnik auf der Nanoskala.

Der wohlbekannte Trend in der Computertechnik - die exponentiell steigende Zahl von Transistoren die auf einer integrierten Schaltung Platz finden - ist allgemein als Moore'sches Gesetz bekannt. Die Verkleinerung der Transistoren verringert den Energieverbrauch und die Kosten bei gleichzeitiger Erhöhung von Geschwindigkeit und Zuverlässigkeit. Die Entwicklung neuer Methoden zur Herstellung kleinster Schaltkreise ist die dringlichste Herausforderung der Computerindustrie.

Wenn man diese Schaltkreise auf die kleinstmögliche Größe bringen könnte - nur einige Atome - könnte man völlig neue Entwürfe und Herstellverfahren ermöglichen. Genau dort füllt die Kenntnis der Kräfte, die bei der atomaren Manipulation wirken, eine bedeutende Wissenslücke: das Verstehen und Steuern des Baus von Nanostrukturen - Atom für Atom.

Wieviel Kraft ist nötig, um ein einzelnes Atom zu bewegen?

Vor einem halben Jahrhundert fragte der Nobelpreisträger Richard Feynman in seinem denkwürdigen Vortrag "There is plenty of room at the bottom", welche Möglichkeiten sich eröffnen würden, wenn man einzelne Atome nach Belieben anordnen könnte. Dieser Traum ist heute Realität, und heute wird atomare Manipulation auf breiter Front in der Wissenschaft angewendet um atomare Strukturen zu bauen, zu verändern und zu vermessen. Die fundamentale Frage: "Welche Kraft brauchen wir, um ein Atom zu verschieben" blieb dagegen bis heute der experimentellen Erforschung verschlossen.

Im heute publizierten Artikel beschreiben die Wissenschaftler den Einsatz eines empfindlichen Rasterkraftmikroskops, um sowohl die Stärke als auch die Richtung der Kraft zu messen, die eine scharfe Spitze beim Verschieben eines Atoms darauf ausübt. Das Team fand heraus, dass die Kraft stark von der chemischen Identität des Atoms und der Unterlage abhängt. Für ein kleines Molekül ergibt sich eine ganz andere Kraft als für ein Metallatom.

Das Kraftmikroskop wurde vor mehr als 20 Jahren von Nobelpreisträger und IBM Fellow Gerd Binnig, IBM Mitarbeiter Christoph Gerber und Stanford-Professor Calvin Quate eingeführt und wurde bereits zur Messung atomarer Kräfte eingesetzt, aber noch nie mit einer derart hohen Präzision. "Es ist erstaunlich, dass die winzigen Kräfte die beim Verschieben der Atome wirken mit einem Kraftsensor gemessen werden können, der im Wesentlichen auf der Quarzstimmgabel beruht, die in jeder handelsüblichen Quarzuhr schwingt", sagt Professor Franz Gießibl von der Universität Regensburg, der Erfinder des Stimmgabel-Kraftsensors.

Kontakt:
Jenny Hunter
IBM Media Relations (Americas)
510-919-5320
jennyh@us.ibm.com
Prof. Dr. Franz J. Gießibl,
Institut für Experimentelle und Angewandte Physik
Universität Regensburg
Universitätsstrasse 31
D-93040 Regensburg
Telefon: 0941 943-2105, Fax: 0941 943-2754
Email: franz.giessibl@physik.uni-regensburg.de

Rudolf F. Dietze | idw
Weitere Informationen:
http://www.uni-regensburg.de/
http://www.nytimes.com/2008/02/22/science/22atom.html?_r=1&oref=slogin

Weitere Berichte zu: Atom Transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise