"Weh dem, der lügt"

Und wie können Sie dann wenigstens den Ehrlichen doch noch treffen? Eine internationale Forschergruppe um Prof. Harald Weinfurter (Max-Planck-Institut für Quantenoptik in Garching und Ludwig-Maximilians-Universität München) hat jetzt ein neuartiges Quantenprotokoll entwickelt, das Ihnen diese Entscheidung ermöglicht (Phys. Rev. Lett., 22. Januar 2008).

In der klassischen Kommunikationstheorie werden Probleme dieser Art, die zum Beispiel bei der Kommunikation zwischen Computern, beim fehlertoleranten Rechnen in Netzwerken oder etwa beim Abgleich bzw. der Übertragung von Daten auftreten, auch als „Byzantinische Vereinbarung“ bezeichnet.

Das Problem, den Fehler bzw. Lügner bei der Kommunikation zwischen genau drei Parteien A, B und C zu entlarven, ist nur dann zu lösen, wenn gleichzeitig mit der Botschaft eine Art Code, eine Liste von Zahlen, weiter gegeben wird. Diese verschiedenen Listen müssen streng miteinander korreliert sein. Aber wie erzeugen wir diese Listen und wie stellen wir sicher, dass diese Listen nicht auch manipuliert wurden? Die Antwort darauf gibt uns die Quantentheorie: Streng korrelierte Listen lassen sich mit Hilfe von verschränkten Quantenteilchen erzeugen.

Quantenkommunikation zwischen zwei Systemen mit Hilfe von zwei miteinander verschränkten Photonen ist mittlerweile fast Stand der Technik. Für die Kommunikation zwischen drei Partnern müssen aber neue Methoden entwickelt werden. Idealerweise würde man hier mit Triple-Zuständen aus dreiwertigen Quantenzuständen (sogenannten Qutrits) arbeiten. Die sind jedoch experimentell nur schwierig zu erzeugen. Das Münchner Protokoll geht auf den Vorschlag des theoretischen Physikers Adán Cabello von der Universität Sevilla zurück. Es basiert auf der Verwendung von vier miteinander verschränkten, zweiwertigen Quantenteilchen, also Qubits. Zwei davon werden an A geschickt, eines jeweils an B und C.

Dem Team von Prof. Harald Weinfurter gelang es, dieses Konzept am Max.Planck-Insitut für Quantenoptik experimentell umzusetzen. Die physikalischen Qubits werden hier durch polarisierte Photonen dargestellt, d.h. die Zustände 0 und 1 entsprechen vertikaler bzw. horizontaler Polarisation. Um den Zustand einer „Quadriga“ aus vier miteinander verschränkten Photonen zu erzeugen, benutzen die Forscher nichtlineare Kristalle und helle Laserpulse. Nachdem die vier Lichtquanten verteilt wurden, messen die Partner unabhängig voneinander deren Polarisation. Aufgrund der Verschränkung zwischen allen vier Photonen sind die Messergebnisse streng korreliert. Ein Vergleich von Testbits miteinander erlaubt es den Partnern – ähnlich wie in der Quantenkryptographie – die Sicherheit der Verteilung zu prüfen. Sie erhalten damit Listen, die für die Entlarvung des Lügners perfekt geeignet sind. [O.M.]

Originalveröffentlichung:
Sascha Gärtner, Mohamed Bourenanne, Christian Kurtsiefer, Adán Cabello, and Harald Weinfurter
„Experimental Demonstration of a Quantum Protocol for Byzantine Agreement and Liar Detection „

Phys. Rev. Lett., 22.02.2008

Kontakt:

Prof. Harald Weinfurter
Department für Physik
Schellingstraße 4
80799 München
Telefon: +49 – 89 / 2180 2044
E-Mail: harald.weinfurter@physik.uni-muenchen.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 – 89 / 32905 213
Fax: +49 – 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Media Contact

Dr. Olivia Meyer-Streng Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpq.mpg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer