Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weshalb sich ein Physiker für Pantoffeltierchen und Spermien interessiert

18.02.2008
Holger Stark erforscht die ausgeklügelten Mechanismen, mit denen sich Mikroorganismen fortbewegen

Er interessiert sich für Pantoffeltierchen, Spermien und Bakterien, für Zahnbelag und den Abtransport von Schleim aus der Lunge. Nichts Besonderes für einen Biologen oder Mediziner, aber Holger Stark ist weder Biologe noch Mediziner, sondern Physiker und von daher verwundert es schon ein wenig, dass er zu solchen Dingen forscht.

"Was mich an Pantoffeltierchen und Spermien interessiert, ist deren Fortbewegung als Mikroorganismen", sagt Holger Stark (44), Professor am Institut für Theoretische Physik der TU Berlin. Fortbewegung sei ein zentraler Bestandteil jeglicher Form von Leben, und was der Mensch darüber wisse, sei durch seine Erfahrung in der makroskopischen Welt geprägt. "Doch ein Großteil des Lebens auf der Erde ist durch Mikroorganismen bestimmt und finde in wässriger Umgebung statt. Die Natur hat ausgeklügelte Mechanismen entwickelt, mit denen sich Bakterien und Spermien in wässriger Lösung fortbewegen oder mit denen sich auf Mikrometerskala Flüssigkeit transportieren lässt wie zum Beispiel der Abtransport von Schleim in der Lunge", erklärt Holger Stark.

Reparaturarbeiten im menschlichen Gefäßsystem
Ein tieferes Verständnis der physikalischen Grundlagen dieser Mechanis-men, so Holger Stark, also auch der physikalischen Beschreibung der Schwimmbewegung von Mikroorganismen ermögliche es, zum Beispiel in der Medizintechnik mikroskopische Maschinen zu bauen, die mit entsprechendem Antrieb in den menschlichen Gefäßsystemen Reparaturarbeiten verrichten können. Mit der Physik dieser Antriebsmechanismen beschäftigt sich Holger Stark. Er spannt damit den großen Bogen von der Grundlagenforschung zur Anwendung seiner wissenschaftlichen Arbeit.
... mehr zu:
»Pantoffeltierchen »Physik »Sperma

In einem Aufsatz für das Physik-Journal, dem Publikationsorgan der Deutschen Physikalischen Gesellschaft, hat Stark die Fortbewegung eines solchen künstlichen Schwimmers auf der Mikrometerskala jüngst beschrieben, den eine Forschergruppe aus Paris und von der Harvard-Universität entwickelt hatte. "Dieser Schwimmer ahmt die Schlagbewegung von Flagellen nach - das sind aus Proteinen zusammengesetzte elastische Fasern, die durch interne molekulare Motoren angetrieben werden. Zum Beispiel bewegen sich Spermien mit ihrer Hilfe fort. In der Lunge wird mit ihnen Schleim transportiert", sagt Holger Stark. Biomimetische Systeme werden solche Modelle genannt, die Erscheinungen in der Biologie imitieren. Seine Untersuchungen haben aufgezeigt, unter welchen Bedingungen sich der mikroskopische Schwimmer optimal fortbewegt. Optimal heißt dabei, eine möglichst große Schwimmgeschwindigkeit bei gleichzeitig hoher Effizienz der Energieausbeute.

"Des Weiteren wollen wir uns mit den Fortbewegungsmechanismen der im menschlichen Verdauungstrakt vorkommenden 'Escherichia coli'-Bakterien und den die Schlafkrankheit hervorrufenden Parasiten, den afrikanischen Trypanosomen, beschäftigen, ebenso mit Biofilmen, wie sie zum Beispiel als Zahnbeläge vorkommen und von miteinander kommunizierenden Bakterien gebildet werden, deren hoch organisierte Netzwerke noch kaum untersucht sind", sagt Stark und ergänzt: "All diese Projekte sind Teil langfristig angelegter Forschungen, die die Hydrodynamik von Mikro- und Nanomaschinen beinhalten."

Die Physik biologischer Systeme ist ein Forschungsschwerpunkt von Holger Stark, der unter anderem an der renommierten Universität Konstanz als Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft (DFG) forschte und lehrte. Ein anderer ist die Untersuchung von weicher Materie, also von Flüssigkristallen, Polymeren, kolloidalen Dispersionen und Membranen, aber auch deren optischen Eigenschaften. "Optische Phänomene faszinieren mich seit jeher. Momentan untersuchen wir mit Blick auf flüssige Schäume und Granulate die diffusive Lichtausbreitung in zellulären Strukturen."

Die Anknüpfungspunkte zu den wissenschaftlichen Arbeiten sowohl an der TU Berlin als auch am Wissenschaftsstandort Berlin-Potsdam sind vielfältig. Sei es zum Exzellenzcluster "Katalyse" der drei Berliner Universitäten, zum DFG-Forschungszentrum Matheon, oder zum Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und dem Fritz-Haber-Institut - der wissenschaftlichen Kooperation setzt Holger Stark keine Grenzen. Und natürlich gehören da auch seine Kontakte nach Japan und in den Iran, nach Paris und Bordeaux, nach Harvard und Philadelphia dazu, wo er an der Universität von Pennsylvania mit einem DFG-Stipendium forschte.

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Holger Stark, Institut für Theoretische Physik, Fachgebiet Statistische Physik weicher Materie und biologischer Systeme, Hardenbergstr. 36, 10623 Berlin, Tel.: 030/314-29623, Fax: 030/314-21130. E-Mail: holger.stark@tu-belin.de

Hinweis: Dieser Beitrag ist das "Thema der Woche" - EIN-Blicke für Journalisten - im TUB-newsportal. Sie finden dort einen Expertendienst sowie weiterführende Links: www.pressestelle.tu-berlin.de/newsportal

Dr. Kristina R. Zerges | idw
Weitere Informationen:
http://www.pressestelle.tu-berlin.de/medieninformationen/
http://www.pressestelle.tu-berlin.de/newsportal

Weitere Berichte zu: Pantoffeltierchen Physik Sperma

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops