Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscherteam findet Neues zur Quanten-Teleportation

23.01.2008
"Nature Physics": Wissenschaftler der Universität Heidelberg, University of Science and Technology of China und der TU Wien berichten die experimentelle Übertragung eines unbekannten Quantenzustandes mit zwischenzeitlicher Speicherung

In der aktuellen Ausgabe von "Nature Physics" (20. Januar) berichten Wissenschaftler der Universität Heidelberg, University of Science and Technology of China und der TU Wien die experimentelle Übertragung eines unbekannten Quantenzustandes mit zwischenzeitlicher Speicherung. Autoren sind Yu-Ao Chen, Shuai Chen, Zhen-Sheng Yuan, Bo Zhao, Chih-Sung Chuu, Jörg Schmiedmayer und Jian-Wei Pan.

Quantenzustände (Quanten-Bits) sind äußerst sensitiv gegenüber Störung. Verschiedene physikalische Systeme haben dabei unterschiedliche Vorteile bei der Übermittlung, Manipulation und der Speicherung von Quantenzuständen. Photonen (Lichtteilchen) sind zum Beispiel hervorragend geeignet für die Kommunikation von Quantenzuständen. Sie sind schnell und robust, jedoch extrem schwer zu speichern. Atomare Ensembles hingegen sind sehr langlebig und können für die Speicherung von Quantenzuständen verwendet werden. Ihre Präzision und lange Kohärenzzeit bilden die Grundlage für moderne Atomuhren. Die Verknüpfung dieser beiden Systeme galt lange als eine große Herausforderung.

In "Nature Physics" berichtet das Team die experimentelle Übertragung eines unbekannten Quantenzustandes mit zwischenzeitlicher Speicherung. Dabei wird mit Hilfe von Quanten-Teleportation der Zustand eines Photons auf einen atomaren Quantenspeicher übertragen, wo er im atomaren Ensemble für bis zu acht Mikrosekunden gespeichert und anschließend wieder ausgelesen und auf ein Photon übertragen wird. Eine solche Schnittstelle, die die Übertragung von Quantenzuständen von Licht auf Materie und die anschließende Rückübertragung ermöglicht, ohne dabei den Quantencharakter der gespeicherten Information zu zerstören, ist ein wesentlicher Bestandteil eine zukünftigen Quantentechnologie.

Wie kann dieses Ziel erreicht werden?

In der klassischen, makroskopischen Welt ist es ohne weiteres möglich, Informationen zu kopieren und zu senden, so zum Beispiel mit einem Fax-Gerät. In der mikroskopischen Quantenwelt ist dies jedoch nicht möglich. Quanteninformation kann nicht kopiert und nur transferiert werden, wenn dabei das Original zerstört wird. Wie jedoch ist diese Übertragung eines Quantenzustandes zwischen zwei Orten zu erreichen?

Bei der Quanten-Teleportation wird ein unbekannter Zustand zu einem anderen Ort transferiert, ohne dass im Laufe des Vorgangs jegliche Kenntnis über den Zustand gewonnen wird. Dies ist eines der faszinierenden Beispiele dafür, wie Quanten-Verschränkung für reale Anwendungen verwendet werden kann, die in zahlreichen Quanten-Kommunikations- und -Algorithmen-Protokollen Verwendung finden.

Sowohl die Quanten-Teleportation als auch der Quanten-Speicher sind bereits in so genannten "proof-of-principle"-Experimenten gezeigt worden. Jedoch die Implementierung einer Quanten-Teleportation von photonischen Qubits mit integriertem Speicher war bis heute nicht möglich.

Im Experiment verwenden die Wissenschaftler photonische Qubits als Datenträger; die Quanten-Information ist codiert im Polarisationsfreiheitsgrad der Photonen. Als Quanten-Speicher dient der kollektive Spin-Zustand eines ultrakalten Ensembles von etwa einer Millionen Rubidium-Atomen. Zunächst wird eine Verschränkung zwischen dem Polarisationszustand des Photons und dem Zustand des Quanten-Speichers erzeugt. Diese Atom-Photon-Verschränkung dient als Ressource für die Teleportation eines unbekannten photonischen zu einem atomaren Qubit. Dies geschieht mit Hilfe einer so genannten "Bell-Zustands-Messung" zwischen dem zu teleportierenden Photon und dem Photon, das zuvor mit dem atomaren Ensemble verschränkt wurde. Der teleportierte Zustand kann nun im kollektiven Zustand des atomaren Ensembles gespeichert und nach bis zu acht Mikrosekunden erfolgreich wieder ausgelesen werden.

Die erfolgreiche Teleportation wird mit Hilfe der experimentell bestimmten Reinheit des finalen Zustandes verifiziert, die größer ist als das klassische Limit von zwei Dritteln.

Das beschriebene Experiment trägt nicht nur zum fundamentalen Verständnis moderner Physik bei, sondern ist darüber hinaus ein bedeutender Schritt in die Richtung effizienter und skalierbarer Quanten-Netzwerke.

Rückfragen bitte an:
Yuao Chen
Quo group
Physikalisches Institut der Universität Heidelberg
Philosophenweg 12, 69120 Heidelberg
Tel. 06221 549358, Fax 475733
yuao@physi.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de
http://www.uni-heidelberg.de/presse
Irene Thewalt
Tel. 06221 542310, Fax 542317
presse@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de/presse

Weitere Berichte zu: Photon Quanten-Teleportation Quantenzustand Qubit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie