Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Reifen auf der Straße haften - Neue Theorie macht lange Tests überflüssig

27.05.2002


Phänomenen der Haftung auf der Spur: Dr. Bo Persson, Formel-1-Reifen fest im Griff und die Theorie im Rücken.
Foto: Forschungszentrum Jülich


Was haben Rennreifen der Formel 1 mit Fliegenfüßen gemeinsam? Diese scheinbar skurrile Frage lässt sich mit Hilfe der Physik beantworten: Sie sind weich und anschmiegsam und zudem dünsten beide eine mehr oder weniger klebrige Flüssigkeit aus. So werden Unebenheiten auf dem Asphalt oder - bei der Fliege - im Fensterglas ausgefüllt. Die Kontaktfläche wird größer und die Haftung dadurch verbessert. Diesen und anderen Phänomenen der Haftung ist Dr. Bo Persson aus dem Institut für Festkörperforschung im Forschungszentrum Jülich auf der Spur. Eine neue von ihm entwickelte Theorie macht es nun erstmals möglich, zu berechnen und vorherzusagen, wie gut ein Reifen aus einer bestimmten Gummimischung auf dem Asphalt haften wird - ohne einen ganzen Reifen produzieren zu müssen.


Autoreifen sind sehr unterschiedlich zusammengesetzt. Die unterschiedlichen Gummimischungen sind auf die jeweilige Jahreszeit und deren Durchschnittstemperaturen hin optimiert. Reine Winterreifen sollte man daher nicht im Sommer fahren. Stets ist die Industrie aber auf der Suche nach noch besseren Materialien. Jedes Jahr testen die Reifenfirmen Tausende von Mischungen verschiedenster Gummisorten, um daraus neue Autoreifen zu entwickeln. Aus diesen Gummimischungen werden dann Testreifen hergestellt, um ihre Eigenschaften auf dem Asphalt zu prüfen. Mit einer neuen Theorie zur Haftreibung ermöglicht es Bo Persson, die langen Testreihen enorm zu verkürzen.

"Alles was ich für meine Berechnungen an Informationen benötige, ist wie elastisch eine kleine rechteckige Gummiprobe ist und wie gut sie Stöße abfängt", sagt Persson. "Ein ganzer Reifen muss nicht mehr produziert werden, um eine Aussage über die spätere Haftung auf dem Asphalt machen zu können. Im Jahr 2001 haben wir zehn neue Testkomponenten erst berechnet und dann in die ,Reifen-Praxis’ geschickt. Die Ergebnisse von Theorie und Praxis stimmten sehr gut überein." Ausschlag gebend für den Erfolg der neuen Theorie ist, dass Persson die Kontaktfläche zwischen Gummi und Asphalt exakter als bisher berechnen kann. Frühere Modelle bezogen nur eine gemittelte Rauhigkeit der Oberfläche ein. "Ich beziehe alle Längenskalen mit ein - vom Zentimeter bis hinunter auf Atomebene", bestätigt Persson. Was die Theorie leistet, ist eine Vorhersage, welche Elastizität und Dämpfung die Gummimischung haben sollte, um eine optimale Haftung auf einer rauhen Oberfläche zu erzielen.


Einer der Haupteffekte, die es zu berechnen gilt, ist die Fähigkeit des Gummis, Stöße abzufangen. Physikalisch basiert diese Fähigkeit darauf, dass das Material in der Lage ist, Energie zu speichern. Drückt man ein weiches Material auf einen harten, unebenen Boden, wird es ungleichmäßig belastet: Steinchen und Hervorhebungen im Asphalt dellen den Reifen ein, an "Täler" und Aussparungen hingegen wird sich das Gummi anschmiegen. Die Anschmiegung ist jedoch nicht perfekt - der Reifen ist ja nicht flüssig, sondern relativ stabil. Im Gegensatz zu Trockenreifen aus der Formel 1, die Harze ausdünsten und so tatsächlich Unebenheiten im Asphalt ausgleichen und die Kontaktfläche erheblich verbessern, sondern normale Autoreifen keine klebrige Flüssigkeit ab. Denn der Nachteil der guten Straßenlage für "Schumi" & Co ist der hohe Reifenverschleiß. Diese Rennreifen laugen regelrecht aus.

Dort wo also das normale Reifenmaterial eingedellt wird, staut sich Energie auf, an anderer Stelle gibt es nach. Persson hat eine mathematische Beschreibung für die Unebenheiten des Asphalts gefunden, die diese theoretisch bis auf Atomebene herunter rechnet. Wichtig ist es hierbei zu wissen, wie groß die tatsächliche Fläche der gegenseitigen Berührung von Gummi und Asphalt ist und welche Kräfte auf das Material einwirken. Denn ein Reifen, der bei einer Vollbremsung unter der Last des Autos über den Asphalt geschoben wird, ist ganz anderen Kräften ausgesetzt als ein Reifen, der auf der Straße ruhig steht. Hier kommen neben den Unebenheiten der Straße auch die inneren Reibungskräfte des Materials zum Tragen. Dr. Bo Persson beschreibt das so: "Die Schroffheit des rauhen Untergrundes übt oszillierende Kräfte auf die Oberfläche des Gummis aus, was zu zyklischen Deformationen im Inneren des Materials führt. Es entstehen enorme innere Reibungskräfte und ein gewisser innerer Energiestau. Bei einer bestimmten Frequenz dieser Deformationen kann der Elastizitätsfaktor des Reifens 1000fach zunehmen. Dann ändert sich natürlich auch seine Bodenhaftung!" Auch diese physikalischen Eigenheiten des elastischen Materials rechnet Persson mit ein.

Gesucht wird ein Mittelweg zwischen optimaler Anpassung an die Straße - einem weichen, anschmiegsamen Material - und einem möglichst haltbaren Reifen, der nicht bei der ersten Vollbremsung in Fetzen fliegt. Die neue Theorie hilft, dieses Material schneller als bisher ausfindig zu machen.

Peter Schäfer | idw

Weitere Berichte zu: Asphalt Gummimischung Haftung Unebenheiten

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie