Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anti-Elektronen in der Galaxis

10.01.2008
Forscher entdecken mit dem Satelliten INTEGRAL eine ungleiche Verteilung von Positronen und vermuten Röntgendoppelsterne als ihre Quellen

Alles hat zwei Seiten - auch die Materie: So existiert zu jedem Elementarteilchen ein Antiteilchen mit derselben Masse, aber der entgegengesetzten elektrischen Ladung. Zwar haben die Astronomen bisher nirgendwo im Weltall die in der Science-Fiction-Literatur viel beschworene Antimaterie entdeckt, wohl aber einen ihrer Bausteine: das Gegenstück zum Elektron, das sogenannte Positron. Jetzt zeigen Beobachtungen mit dem europäischen Satelliten INTEGRAL, dass diese positiv geladenen Partikel innerhalb unseres Milchstraßensystems ungleich verteilt sind - im Westen der zentralen Region wurden entlang der galaktischen Scheibe etwa doppelt so viele Positronen gefunden wie im Osten. Eine ähnliche Verteilung fanden die Forscher um Georg Weidenspointner vom Garchinger Max-Planck-Institut für extraterrestrische Physik für eine Population von Röntgendoppelsternen. Offenbar stammt also ein Großteil der Positronen aus dieser Quelle (Nature, 10. Januar 2008).


Ungleichgewicht: Die Karte (oben) zeigt den gesamten Himmel im Licht der 511 keV-Strahlung; in der Mitte das Zentrum der Milchstraße. Die Strahlung aus der westlichen galaktischen Scheibe ist deutlich heller als die aus der östlichen. Ein sehr ähnliches Bild ergibt die Verteilung der massearmen Röntgendoppelsterne (Karte unten). Forscher schließen daraus auf einen Zusammenhang von Sternen und Strahlung. Bild: Weidenspointner et al., Nature, 10. Januar 2008

Beim Nachweis der Positronen kommt den Wissenschaftlern gleichsam ein Knalleffekt zu Hilfe: Wenn ein Antiteilchen auf sein Gegenstück der normalen Materie trifft, löschen sich beide gegenseitig aus. Die bei diesem Annihilation genannten Prozess in Form von Gammastrahlung freigesetzte Energie entspricht der Masse des Teilchen-Antiteilchen-Paares. Von besonderer Bedeutung ist dabei die Annihilation von Elektron und Positron in zwei Gammaquanten der charakteristischen Energie von 511.000 Elektronenvolt (511 keV).

Die Existenz von Positronen in den zentralen Regionen unserer Galaxis wurde bereits vor etwa 30 Jahren entdeckt. Detektoren für Gammastrahlung, von Ballons an den oberen Rand der Erdatmosphäre getragen, registrierten die charakteristische Strahlung bei 511 keV aus der ungefähren Richtung des galaktischen Zentrums. Der Ursprung der Positronen blieb jedoch rätselhaft und wird seither lebhaft diskutiert.

Einer der Theorien zufolge entstammen die Positronen dem Zerfall von radioaktiven Kernen, die in großer Zahl in stellaren Explosionen (Supernovae) entstehen. Besondere Bedeutung kommt dabei dem radioaktiven Isotop 56Co (Cobalt) mit einer Halbwertszeit von etwa 77 Tagen zu. Es ist jedoch noch umstritten, ob die bei dessen Zerfall erzeugten Positronen in ausreichender Anzahl die Überreste des explodierten Sterns verlassen können, um die beobachtete Verteilung der 511 keV Strahlung zu erklären. Ein anderes wichtiges radioaktives Isotop ist 26Al (Aluminium) mit einer Halbwertszeit von etwa einer Million Jahren, das vor allem von massereichen Sternen erzeugt wird. Doch auf das Konto von 26Al gehen nach neuesten Messungen nur etwa ein Viertel der in unserer Galaxis beobachteten Positronen.

Deshalb haben einige Theoretiker vorgeschlagen, die Positronen entstünden bei der Annihilation oder dem radioaktiven Zerfall von Teilchen der rätselhaften dunklen Materie. Sie sollte sich sphärisch um das Zentrum unserer Galaxis sammeln und würde damit auf einfache Weise erklären, warum die Positronen vor allem in dieser Region beobachtet werden.

Jetzt haben die Wissenschaftler mit INTEGRAL den entscheidenden Hinweis gefunden, dass auch die sphärisch verteilte dunkle Materie nicht die Hauptquelle der Positronen sein kann: Westlich der zentralen Region unserer Galaxis wurde etwa doppelt so starke 511 keV-Strahlung entlang der galaktischen Scheibe beobachtet wie östlich davon. Eine solch ungleiche Verteilung erscheint sehr überraschend, weil in der inneren Galaxis sowohl Gas als auch Sterne relativ gleichmäßig verteilt sind.

Interessanterweise zeigen aber die bisher mit INTEGRAL im Licht der harten (hochenergetischen) Röntgenstrahlung gefundenen sogenannten massearmen Röntgendoppelsterne eine ähnlich ungleiche Verteilung wie die charakteristische 511 keV-Strahlung. "Diese Übereinstimmung legt die Vermutung nahe, dass diese Röntgendoppelsterne für einen wesentlichen Anteil der Positronen in unserer Galaxis sorgen - sowohl in der Zentralregion als auch in der Scheibe", sagt Georg Weidenspointner vom Max-Planck-Institut für extraterrestrische Physik.

Ein massearmer Röntgendoppelstern ist ein System, in dem ein sonnenähnlicher Stern und ein kompaktes stellares Objekt (ein Neutronenstern oder ein schwarzes Loch) einander in relativ geringem Abstand umkreisen. Die Gravitation des kompakten Objekts ist dabei so stark, dass es Gas von seinem Begleiterstern absaugt. Das Gas stürzt jedoch nicht direkt auf das kompakte Objekt, sondern umkreist es zunächst in einer Akkretionsscheibe. Dabei erhitzt sich das Gas durch innere Reibung derart stark, dass es im harten Röntgenlicht hell aufleuchtet. Bei diesem Prozess kann die Intensität der Strahlung so hoch werden, dass aus der Energie zweier Lichtteilchen ein Elektron-Positron-Paar entsteht - der umgekehrte Prozess der Annihilation von Elektron und Positron.

"Einfache Abschätzungen zeigen, dass die Positronen in unserer Galaxis mindestens zur Hälfte von massearmen Röntgendoppelsternen erzeugt werden", sagt Georg Weidenspointner. Die andere Hälfte könnte durch einen ähnlichen Prozess der Massenakkretion vom supermassiven schwarzen Loch im Zentrum unserer Galaxis stammen oder aus Sternexplosionen in der zentralen Region.

INTEGRAL ist für absehbare Zeit das einzige Observatorium, mit dem sich sowohl die charakteristische 511 keV-Strahlung als auch die massearmen Röntgendoppelsterne beobachten lassen. In den kommenden Jahren werden Weidenspointner und seine Kollegen versuchen, ihre Ergebnisse zu erhärten und zu verfeinern.

Originalveröffentlichung:

Georg Weidenspointner, Gerry Skinner, Pierre Jean, Jürgen Knödlseder, Peter von Ballmoos, Giovanni Bignami, Roland Diehl, Andrew W. Strong, Bertrand Cordier, Stéphane Schanne & Christoph Winkler
An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays
Nature, 10. Januar 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Galaxis Integral Röntgendoppelstern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie