Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kräfte aus dem Nichts

10.01.2008
Stuttgarter Physiker beobachten die kritische Casimir-Kraft und hebeln mit ihr einen Effekt aus, der Nanomaschinen lähmt

Wenn eine Maschine klemmt, ist der Ingenieur schuld - oder die Physik. Letzteres gilt zumindest für die ersten einfachen Nanomaschinen, die von der Casimir-Kraft gebremst werden. Diese Kraft wirkt nur im Maßstab von einigen Millionstel Zentimetern und lässt winzige Maschinenteile aneinander haften. Wissenschaftler vom Max-Planck-Institut für Metallforschung und von der Universität Stuttgart haben eine ähnliche Kraft nun auch in einer Mischung zweier Flüssigkeiten beobachtet. Sie haben außerdem einen Weg gefunden, die Wirkung der Kraft umzukehren, so dass sich mögliche Blockaden von Nanomaschinen künftig vielleicht vermeiden lassen. So wird es möglich, Maschinen weiter zu miniaturisieren und etwa mechanische Schalter oder Sensoren im Nanometermaßstab herzustellen. (Nature, 10. Januar 2008 (DOI: 10.1038/nature06443))


Messung in der Schwebe: Ein Lichtstrahl wird an einer Gefäßwand total reflektiert, nur ein wenig Licht leckt in das Gefäß. Wie viel die Kugel davon reflektiert, hängt stark von ihrem Abstand zur Wand und damit von der Kraft ab, die sie zur Wand zieht. Bild: Ingrid Schofron/Max-Planck-Institut für Metallforschung

Von nichts kommt nichts. Nur in der Physik ist das manchmal anders. So ziehen sich zwei Metallplatten auf geheimnisvolle Weise an, wenn sie sich im Vakuum und am absoluten Nullpunkt der Temperatur etwa einen halben Mikrometer gegenüber stehen. Die Kraft, die die Platten zusammen schiebt, rührt von quantenmechanischen Schwankungen des Vakuums her - also eigentlich aus dem Nichts. Solche Fluktuation stellen Schwankungen elektromagnetischer Wellen dar. Diese müssen auf den Oberflächen der beiden elektrisch leitenden Platten einen Knoten besitzen. Daher ist die Zahl erlaubter Wellen zwischen den Platten stark eingeschränkt. Außerhalb der Platten können sie sich dagegen ungehindert ausbreiten. Hieraus ergibt sich letztendlich eine anziehende Kraft zwischen den Platten.

Diesen Effekt sagte der Physiker Hendrik Casimir schon 1948 theoretisch voraus, heute sorgt er dafür, dass die Bauteile von Nanomaschinen aneinander kleben. Clemens Bechinger, Professor an der Universität Stuttgart und seit Beginn des Jahres auch Max-Planck Fellow, Christopher Hertlein und weitere Mitarbeiter haben eine ganz ähnliche Kraft nun auch in einer Mischung von Wasser und der öligen Flüssigkeit Lutidin experimentell beobachtet: die kritische Casimir-Kraft. "Diese Kraft ist so schwach, dass sie nur sehr schwer nachzuweisen ist", sagt Clemens Bechinger. Die Messergebnisse stimmen dabei sehr gut mit Werten überein, die Siegfried Dietrich, Direktor am Stuttgarter Max-Planck-Institut für Metallforschung, und seine Mitarbeiter theoretisch vorhergesagt haben. Die Messergebnisse haben die Wissenschaftler nun gemeinsam veröffentlicht.

Die kritische Casimir-Kraft verdankt ihren Namen der Tatsache, dass sie nahe an einem kritischen Punkt auftritt. Solch einen kritischen Punkt gibt es auch in einem Gemisch von Wasser und Lutidin. Bei niedrigen Temperaturen bilden sie eine klare Lösung. Heizt man diese Lösung jedoch auf etwa 34 Grad Celsius auf, trennen sie sich in zwei unterschiedliche Gemische - Physiker sprechen von zwei Phasen, von denen eine viel Lutidin und die andere viel Wasser enthält.

Die entsprechende Temperatur heißt kritische Temperatur. An diesem sogenannten kritischen Punkt entstehen die beiden Phasen jedoch nicht schlagartig, wie etwa Wasser am Gefrierpunkt zu Eis erstarrt. Vielmehr bilden sich auch unterhalb der kritischen Temperatur schon Bereiche in dem Gemisch, die mehr Lutidin oder mehr Wasser enthalten. Je weiter sich die Temperatur jedoch der kritischen Temperatur nähert, desto größer werden diese Bereiche und desto länger bleiben sie bestehen. "Wie die Konzentration von Wasser und Lutidin in unterschiedlichen Bereichen der Mischung schwankt, ähnelt den quantenmechanischen Fluktuationen im Vakuum", sagt Siegfried Dietrich. Und wie diese sollten die Konzentrationsschwankungen auch eine anziehende Kraft zwischen Oberflächen erzeugen. Und das tun sie auch, wie die Forscher nun nachgewiesen haben.

"Wir haben eine Kunststoffkugel mit einem Mikrometer Durchmesser beobachtet, die in einem Glasgefäß mit Lutidin und Wasser schwebte", sagt Cristopher Hertlein. Die Temperatur der Lösung lag zunächst deutlich unter dem kritischen Punkt. Die Forscher heizten sie dann allmählich auf. Als die Temperatur nur noch zwei Zehntel Grad vom kritischen Punkt entfernt war, näherte sich die Kunststoffkugel der Glaswand des Gefäßes an. Den Abstand der Kugel zur Glaswand bestimmten die Physiker mit Hilfe evaneszenter optischer Felder, die an der Kunststoffkugel gestreut werden. Sie strahlten Licht in einem spitzen Winkel auf das Gefäß, so dass es fast gänzlich reflektiert wird. Nur ein winziger Teil des Lichts leckt in die Flüssigkeit. Wieviel davon die Kunststoffkugel erreicht und wie stark dieser Anteil dann gestreut wird, hängt sehr stark von deren Abstand zur Gefäßwand ab.

Den Forschern ist es gelungen aus dem Abstand des Kügelchens die Kraft zu ermitteln, die auf sie wirkt. Eine knifflige Angelegenheit: Das winzige Kunststoffkügelchen bewegt sich nämlich alleine deshalb schon hektisch, weil es ständig mit den aufgeheizten Flüssigkeitsmolekülen zusammenstößt. Die kritische Casimir-Kraft macht sich daher nur in Form statistischer Ausreißer in Richtung Glaswand bemerkbar. "Diese statistischen Ausreißer können wir nur feststellen, weil unsere Messmethode mehrere tausend Mal sensibler ist als die Atomic-Force-Mikroskopie", sagt Clemens Bechinger. Die Atomic-Force-Mikroskopie misst die anziehende Kraft, die eine Oberfläche auf einen feinen Messarm ausübt. Mit Hilfe der optischen Messmethode haben die Stuttgarter nun festgestellt, dass die kritische Casimir-Kraft nur 600 Femto-Newton beträgt, also weniger als den millionsten Teil der Gewichtskraft eines Flohs.

Diese Kraft schiebt die Kunststoffkugel aber nur dann zur Glaswand, wenn Glas und Kunststoffkugel entweder beide Wasser oder beide Öl bevorzugen. Sind die beiden Oberflächen dagegen so beschichtet, dass nur eine der beiden Oberflächen Öl bevorzugt, treibt die kritische Casimir-Kraft die Kugel von der Glaswand weg. Dann bilden sich an der einen Oberfläche nämlich eher Bereiche mit viel Wasser und an der anderen solche mit viel Öl. Da es aber Energie kostet, die wasserreiche mit der ölreichen Phase in direkten Kontakt zu bringen, wird die Kugel abgestoßen.

"Diesen Effekt haben wir nach unseren theoretischen Untersuchungen auch erwartet", sagt Dietrich. Mit seinem experimentellen Nachweis bietet sich - so erwarten die Forscher - nun auch die Perspektive, die Blockade von Nanomaschinen zu verhindern. Solche Maschinen im Maßstab von wenigen Millionstel Zentimetern könnten einmal als Aktuatoren etwa in der Medizin dienen. Sie könnten Operationen ohne größere Eingriffe erlauben oder Medikamente gezielt zu einem Krankheitsherd transportieren. Bislang scheitern solche Maschinen unter anderem jedoch an der Casimir-Kraft der quantemechanischen Vakuumfluktuationen, die ihre Bewegung lähmt. "Wenn diese Maschinen nicht im Vakuum, sondern in einem Flüssigkeitsgemisch nahe am kritischen Punkt arbeiten würden, ließe sich das ändern", so Siegfried Dietrich. Dann ließen sich die Maschinenteile nämlich so beschichten, dass die Casimir-Kraft abstoßend wirkt und die Maschine rund läuft. Das zu erreichen, ist eines der Ziele, die Dietrichs theoretische Gruppe und Bechingers experimentelle Gruppe künftig gemeinsam verfolgen werden.

Originalveröffentlichung:

Christopher Hertlein, Laurent Helden, Andrea Gambassi, Siegfried Dietrich, Clemens Bechinger
Direct measurement of critical Casimir forces
Nature, 10. Januar 2008 (DOI: 10.1038/nature06443)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Casimir-Kraft Kunststoffkugel Nanomaschine

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften