Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung zur Beseitigung langlebigen radioaktiven Abfalls

07.01.2008
Ende 2007 wurde ein neues Neutronenlabor im Forschungszentrum Dresden-Rossendorf in Betrieb genommen. Hier soll in Zukunft untersucht werden, wie langlebiger radioaktiver Abfall, der weltweit in Kernkraftwerken entsteht, so umgewandelt werden kann, dass er nur noch für historisch überschaubare Zeiten in ein Endlager eingeschlossen werden muss. Das Phänomen wird "Transmutation" genannt.

Langlebige schwere Atomkerne wie etwa Curium oder Neptunium können durch Beschuss mit Neutronen umgewandelt werden und in kurzlebige oder sogar stabile Reaktionsprodukte zerfallen. Nach weniger als 1.000 Jahren haben sie dann das natürliche Radioaktivitätsniveau erreicht.

Eines der Hauptargumente gegen Kernenergie als Energiequelle ist der Abfall. Der gegenwärtig produzierte radioaktive Abfall muss für mindestens 1 Million Jahre eingelagert werden, bis seine Aktivität wieder die von natürlich vorkommenden Uranerzen erreicht hat. Transmutation ist die einzige bekannte Methode, mit der man diese Zeit entscheidend verkürzen kann, mit der also langlebige Radionuklide in kurzlebige oder stabile Nuklide umgewandelt werden können. Schnelle Neutronen spielen dabei eine wichtige Rolle. Sie können seit kurzem am Elektronenbeschleuniger ELBE in Rossendorf erzeugt werden.

Transmutationen von Atomkernen finden auch im Kosmos statt: So werden alle chemischen Elemente oberhalb von Eisen im Periodensystem der Elemente durch Neutroneneinfang-Prozesse in Sternen oder Sternexplosionen gebildet. Auf die Umwandlung radioaktiven Abfalls übertragen bedeutet das, dass ein langlebiger schwerer Atomkern wie z.B. Plutonium oder Curium durch Beschuss mit schnellen Neutronen in kurzlebige oder stabile Reaktionsprodukte zerfallen kann. Nach weniger als 1.000 Jahren haben diese die meiste Radioaktivität verloren. Die Forschung konzentriert sich auf Experimente mit Neutronen im Energiebereich bis zu einigen Millionen Elektronvolt. Es handelt sich um den typischen Energiebereich für Neutronen in schnellen Reaktoren.

Mit dem Experiment "nELBE" sollen zukünftig die inelastische Neutronenstreuung, d.h. die Anregung von Atomkernen durch Energieübertragung der Neutronen, sowie der Neutroneneinfang von Atomkernen untersucht werden. In einem ersten Schritt sollen nicht-radioaktive Materialien (wie z.B. Eisen oder Magnesium) mit Neutronen beschossen werden, die für den Bau von neuen Reaktoren der so genannten Generation IV in Frage kommen. Diese Reaktoren werden weltweit derzeit diskutiert. Mit einer Flotte aus thermischen und schnellen Reaktoren soll gleichzeitig Energie erzeugt und das Problem des langlebigen radioaktiven Abfalls gelöst werden. Die Rossendorfer Forscher wollen herausfinden, wie genau schnelle Neutronen mit Eisen wechselwirken und im nächsten Schritt steht Strontium-88 als nicht-radioaktiver Testfall für das Spaltprodukt Strontium-90 auf dem Plan, um die Transmutierbarkeit von Spaltprodukten zu untersuchen.

Am FZD werden die Neutronen mit Hilfe des intensiven Elektronenstrahls am ELBE-Beschleuniger erzeugt. Dabei wird der Elektronenstrahl auf flüssiges Blei gelenkt und dort abgebremst. Diese technologisch sehr komplexe Experimentieranordnung wurde gemeinsam von den FZD-Instituten für Sicherheitsforschung und für Strahlenphysik aufgebaut. In ihr werden pro Sekunde bis zu 10 Billionen Neutronen erzeugt. Mit Hilfe von speziellen Detektoren kann die Flugzeit der Neutronen und damit ihre Geschwindigkeit und Energie präzise bestimmt werden. Das Experiment verwendet dazu als weltweit einziges einen Elektronenstrahl von bis zu 500 kHz Wiederholrate, das bedeutet, dass 500.000 Mal in der Sekunde ein schneller Neutronenpuls auf die Probe gelenkt werden kann. Zusammen mit der geringen Flugstrecke von nur fünf Metern kann somit eine sehr hohe Neutronenintensität erzeugt werden.

Weitere Informationen:
Prof. Frank-Peter Weiß
Institut für Sicherheitsforschung des FZD
Tel.: 0351 260 - 3480
Email: f.p.weiss@fzd.de
Dr. Arnd Junghans
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Strahlenphysik
Tel.: 0351 260 - 2622 / 2859
Email: a.junghans@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de/

Weitere Berichte zu: Abfall Atomkern Dresden-Rossendorf Eisen FZD Neutron Reaktor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie