Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung zur Beseitigung langlebigen radioaktiven Abfalls

07.01.2008
Ende 2007 wurde ein neues Neutronenlabor im Forschungszentrum Dresden-Rossendorf in Betrieb genommen. Hier soll in Zukunft untersucht werden, wie langlebiger radioaktiver Abfall, der weltweit in Kernkraftwerken entsteht, so umgewandelt werden kann, dass er nur noch für historisch überschaubare Zeiten in ein Endlager eingeschlossen werden muss. Das Phänomen wird "Transmutation" genannt.

Langlebige schwere Atomkerne wie etwa Curium oder Neptunium können durch Beschuss mit Neutronen umgewandelt werden und in kurzlebige oder sogar stabile Reaktionsprodukte zerfallen. Nach weniger als 1.000 Jahren haben sie dann das natürliche Radioaktivitätsniveau erreicht.

Eines der Hauptargumente gegen Kernenergie als Energiequelle ist der Abfall. Der gegenwärtig produzierte radioaktive Abfall muss für mindestens 1 Million Jahre eingelagert werden, bis seine Aktivität wieder die von natürlich vorkommenden Uranerzen erreicht hat. Transmutation ist die einzige bekannte Methode, mit der man diese Zeit entscheidend verkürzen kann, mit der also langlebige Radionuklide in kurzlebige oder stabile Nuklide umgewandelt werden können. Schnelle Neutronen spielen dabei eine wichtige Rolle. Sie können seit kurzem am Elektronenbeschleuniger ELBE in Rossendorf erzeugt werden.

Transmutationen von Atomkernen finden auch im Kosmos statt: So werden alle chemischen Elemente oberhalb von Eisen im Periodensystem der Elemente durch Neutroneneinfang-Prozesse in Sternen oder Sternexplosionen gebildet. Auf die Umwandlung radioaktiven Abfalls übertragen bedeutet das, dass ein langlebiger schwerer Atomkern wie z.B. Plutonium oder Curium durch Beschuss mit schnellen Neutronen in kurzlebige oder stabile Reaktionsprodukte zerfallen kann. Nach weniger als 1.000 Jahren haben diese die meiste Radioaktivität verloren. Die Forschung konzentriert sich auf Experimente mit Neutronen im Energiebereich bis zu einigen Millionen Elektronvolt. Es handelt sich um den typischen Energiebereich für Neutronen in schnellen Reaktoren.

Mit dem Experiment "nELBE" sollen zukünftig die inelastische Neutronenstreuung, d.h. die Anregung von Atomkernen durch Energieübertragung der Neutronen, sowie der Neutroneneinfang von Atomkernen untersucht werden. In einem ersten Schritt sollen nicht-radioaktive Materialien (wie z.B. Eisen oder Magnesium) mit Neutronen beschossen werden, die für den Bau von neuen Reaktoren der so genannten Generation IV in Frage kommen. Diese Reaktoren werden weltweit derzeit diskutiert. Mit einer Flotte aus thermischen und schnellen Reaktoren soll gleichzeitig Energie erzeugt und das Problem des langlebigen radioaktiven Abfalls gelöst werden. Die Rossendorfer Forscher wollen herausfinden, wie genau schnelle Neutronen mit Eisen wechselwirken und im nächsten Schritt steht Strontium-88 als nicht-radioaktiver Testfall für das Spaltprodukt Strontium-90 auf dem Plan, um die Transmutierbarkeit von Spaltprodukten zu untersuchen.

Am FZD werden die Neutronen mit Hilfe des intensiven Elektronenstrahls am ELBE-Beschleuniger erzeugt. Dabei wird der Elektronenstrahl auf flüssiges Blei gelenkt und dort abgebremst. Diese technologisch sehr komplexe Experimentieranordnung wurde gemeinsam von den FZD-Instituten für Sicherheitsforschung und für Strahlenphysik aufgebaut. In ihr werden pro Sekunde bis zu 10 Billionen Neutronen erzeugt. Mit Hilfe von speziellen Detektoren kann die Flugzeit der Neutronen und damit ihre Geschwindigkeit und Energie präzise bestimmt werden. Das Experiment verwendet dazu als weltweit einziges einen Elektronenstrahl von bis zu 500 kHz Wiederholrate, das bedeutet, dass 500.000 Mal in der Sekunde ein schneller Neutronenpuls auf die Probe gelenkt werden kann. Zusammen mit der geringen Flugstrecke von nur fünf Metern kann somit eine sehr hohe Neutronenintensität erzeugt werden.

Weitere Informationen:
Prof. Frank-Peter Weiß
Institut für Sicherheitsforschung des FZD
Tel.: 0351 260 - 3480
Email: f.p.weiss@fzd.de
Dr. Arnd Junghans
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Strahlenphysik
Tel.: 0351 260 - 2622 / 2859
Email: a.junghans@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de/

Weitere Berichte zu: Abfall Atomkern Dresden-Rossendorf Eisen FZD Neutron Reaktor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten