Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atome beim Platzwechsel erwischt

21.12.2007
Mainzer Forscher beobachten grundlegenden Effekt des Quantenmagnetismus mit ultrakalten Atomen - Publikation in Science

Wissenschaftlern der Johannes Gutenberg-Universität Mainz, in Kollaboration mit Wissenschaftlern aus Harvard und Boston, ist es in einem Experiment mit ultrakalten Atomen gelungen, fundamentale Mechanismen des Quantenmagnetismus im Labor direkt zu beobachten und zu beeinflussen.

"Wir haben mit zwei gekoppelten Atomen eine kontrollierbare magnetische Wechselwirkung realisiert, wie sie auch in den Muttersubstanzen vieler Hochtemperatursupraleiter auftritt, also in Materialien, die gerade hoch aktuell sind", erklärt Stefan Trotzky aus der Arbeitsgruppe Quanten-, Atom- und Neutronenphysik (QUANTUM). Die Gruppe um Prof. Dr. Immanuel Bloch untersucht die Wechselwirkung zwischen kleinsten Teilchen mithilfe ultrakalter Atome, die in Lichtgittern gefangen sind.

Die Arbeit über diese quantenphysikalischen Austauschmechanismen wurde in einer Vorabveröffentlichung für besondere wissenschaftliche Highlights des Wissenschaftsmagazins Science in Science Express am 20. Dezember 2007 online publiziert. Die dabei untersuchten Prozesse sind nicht nur für das Verständnis neuer Werkstoffe mit speziellen magnetischen und elektrischen Eigenschaften von großer Bedeutung, sondern bilden auch die Basis für chemische Bindungen in Molekülen. Darüber hinaus können sie ein wichtiger Baustein für einen Quantencomputer mit ultrakalten Atomen sein, der die Leistungsfähigkeit eines konventionellen Computers um ein Vielfaches übertreffen würde.

... mehr zu:
»Atom »Spin

Die Physiker kühlen in ihrem Experiment Atome bis nahe an den absoluten Nullpunkt auf eine Temperatur von etwa minus 273 Grad ab und halten sie dann durch ein optisches Gitter in einem "Kristall aus Licht" auf vorgeschriebenen Plätzen fest. Die Atome sitzen dort anschaulich wie Eier in einem Eierkarton. Die Besonderheit des Mainzer Experiments ist dabei, dass sich die Atome von einem bestimmten Gitterplatz aus nur zu einem einzigen benachbarten Platz und von dort wieder zurück bewegen können. Dadurch entstehen Tausende von paarweise gekoppelten Gitterplätzen, in denen sich die Dynamik weniger miteinander wechselwirkender Atome im Detail untersuchen lässt.

"In diesen Doppeltöpfen ist es uns nun gelungen, den Austausch zweier Atome mit unterschiedlichem Spin auf benachbarten Plätzen direkt zu beobachten und zu kontrollieren", so Trotzky. Unter dem Spin eines Teilchens wird eine Art Eigendrehung verstanden, die unter anderem dem Magnetismus in Festkörpern zugrunde liegt. Die Wissenschaftler haben jeweils ein Atom mit nach oben gerichtetem und eines mit nach unten gerichtetem Spin auf benachbarte Gitterplätze gesetzt. Das Durchdringen der zwischen ihnen liegenden Schranke ist dabei nach den Regeln der klassischen Physik nicht möglich - erst die Eigenart der Quantenmechanik erlaubt diesen Vorgang in Form eines Hüpf- oder Tunnelprozesses. So kommt es, dass die beiden Atome dazu in der Lage sind, ihren Platz zu tauschen. Dies lässt sich direkt beobachten, da die jeweiligen Atome sich in der Ausrichtung ihres Spins unterscheiden.

Stoßen sich die beiden Teilchen stark ab, so wird man sie niemals zusammen auf einer Seite des Doppeltopfes finden, da dieser Zustand aufgrund der Energieerhaltung nicht erlaubt ist. Allerdings beobachtet man einen Austausch der beiden Atome: War zunächst das Atom mit nach oben gerichtetem Spin auf der linken Seite zu finden, so wird es nach einer bestimmten Zeit rechts auftauchen, während das andere Atom mit entgegengerichtetem Spin von rechts nach links gewandert ist. Die Grundlage für diesen Vorgang ist ein synchroner Hüpfprozess der beiden Teilchen oder formal ein Tunnelprozess zweiter Ordnung. Bereits im Sommer war es den Mainzer Wissenschaftlern gelungen, einen ähnlichen Tunnelprozess, bei dem zwei Teilchen trotz starker Abstoßung eine Schranke nur gemeinsam überwinden, erstmals mit ultrakalten Atomen direkt zu beobachten. Hier durchqueren nun beide Atome in entgegengesetzter Richtung simultan die Barriere. Die Austauschrate, also die Häufigkeit mit der die beiden ihren Platz tauschen, hängt dabei von der Höhe der Barriere und der Stärke der Abstoßung der Atome ab. Beide Größen lassen sich im Experiment über einen weiten Bereich mit großer Genauigkeit einstellen.

Der Platzwechsel der beiden Atome mit unterschiedlichem Spin lässt sich physikalisch als eine Wechselwirkung zwischen den Spins beschreiben. Bemerkenswert ist dabei, dass kein direkter Kontakt zwischen den zwei Atomen benötigt wird. Allein die Form des Doppeltopfes, in dem die beiden Teilchen gefangen sind, bestimmt die Art der Wechselwirkung und damit die magnetischen Eigenschaften der Festkörperminiatur. Die im Experiment gezeigte Möglichkeit, die magnetische Natur des Systems kontrolliert zu verändern, ist dabei einzigartig. In Zukunft wollen die Forscher diese Eigenschaften des Systems nutzen, um exotische Vielteilchenzustände zu erzeugen, von denen einige Ausgangspunkte für neuartige Methoden des Quantenrechnens sein können.

S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E.A. Demler, M.D. Lukin and I. Bloch: Time-resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices. Science Express, 20. Dezember 2007, DOI: 10.1126/science.1150841

Kontakt und Informationen:
Dipl.-Phys. Stefan Trotzky
Tel. +49 6131 39-25955
Fax +49 6131 39-23428
E-Mail: trotzky@uni-mainz.de
Univ.-Prof. Dr. Immanuel Bloch
Tel. +49 6131 39-26234
Fax +49 6131 39-25179
E-Mail: bloch@uni-mainz.de
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz

Petra Giegerich | idw
Weitere Informationen:
http://www.quantum.physik.uni-mainz.de/
http://www.sciencemag.org/cgi/content/abstract/1150841

Weitere Berichte zu: Atom Spin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

nachricht Eine neue Stufe der magnetischen Sättigung
25.07.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die turbulente Atmosphäre der Venus

25.07.2017 | Physik Astronomie

SEEDs – Intelligente Batterien mit zellinterner Sensorik

25.07.2017 | Energie und Elektrotechnik

Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

25.07.2017 | Physik Astronomie