Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atome beim Platzwechsel erwischt

21.12.2007
Mainzer Forscher beobachten grundlegenden Effekt des Quantenmagnetismus mit ultrakalten Atomen - Publikation in Science

Wissenschaftlern der Johannes Gutenberg-Universität Mainz, in Kollaboration mit Wissenschaftlern aus Harvard und Boston, ist es in einem Experiment mit ultrakalten Atomen gelungen, fundamentale Mechanismen des Quantenmagnetismus im Labor direkt zu beobachten und zu beeinflussen.

"Wir haben mit zwei gekoppelten Atomen eine kontrollierbare magnetische Wechselwirkung realisiert, wie sie auch in den Muttersubstanzen vieler Hochtemperatursupraleiter auftritt, also in Materialien, die gerade hoch aktuell sind", erklärt Stefan Trotzky aus der Arbeitsgruppe Quanten-, Atom- und Neutronenphysik (QUANTUM). Die Gruppe um Prof. Dr. Immanuel Bloch untersucht die Wechselwirkung zwischen kleinsten Teilchen mithilfe ultrakalter Atome, die in Lichtgittern gefangen sind.

Die Arbeit über diese quantenphysikalischen Austauschmechanismen wurde in einer Vorabveröffentlichung für besondere wissenschaftliche Highlights des Wissenschaftsmagazins Science in Science Express am 20. Dezember 2007 online publiziert. Die dabei untersuchten Prozesse sind nicht nur für das Verständnis neuer Werkstoffe mit speziellen magnetischen und elektrischen Eigenschaften von großer Bedeutung, sondern bilden auch die Basis für chemische Bindungen in Molekülen. Darüber hinaus können sie ein wichtiger Baustein für einen Quantencomputer mit ultrakalten Atomen sein, der die Leistungsfähigkeit eines konventionellen Computers um ein Vielfaches übertreffen würde.

... mehr zu:
»Atom »Spin

Die Physiker kühlen in ihrem Experiment Atome bis nahe an den absoluten Nullpunkt auf eine Temperatur von etwa minus 273 Grad ab und halten sie dann durch ein optisches Gitter in einem "Kristall aus Licht" auf vorgeschriebenen Plätzen fest. Die Atome sitzen dort anschaulich wie Eier in einem Eierkarton. Die Besonderheit des Mainzer Experiments ist dabei, dass sich die Atome von einem bestimmten Gitterplatz aus nur zu einem einzigen benachbarten Platz und von dort wieder zurück bewegen können. Dadurch entstehen Tausende von paarweise gekoppelten Gitterplätzen, in denen sich die Dynamik weniger miteinander wechselwirkender Atome im Detail untersuchen lässt.

"In diesen Doppeltöpfen ist es uns nun gelungen, den Austausch zweier Atome mit unterschiedlichem Spin auf benachbarten Plätzen direkt zu beobachten und zu kontrollieren", so Trotzky. Unter dem Spin eines Teilchens wird eine Art Eigendrehung verstanden, die unter anderem dem Magnetismus in Festkörpern zugrunde liegt. Die Wissenschaftler haben jeweils ein Atom mit nach oben gerichtetem und eines mit nach unten gerichtetem Spin auf benachbarte Gitterplätze gesetzt. Das Durchdringen der zwischen ihnen liegenden Schranke ist dabei nach den Regeln der klassischen Physik nicht möglich - erst die Eigenart der Quantenmechanik erlaubt diesen Vorgang in Form eines Hüpf- oder Tunnelprozesses. So kommt es, dass die beiden Atome dazu in der Lage sind, ihren Platz zu tauschen. Dies lässt sich direkt beobachten, da die jeweiligen Atome sich in der Ausrichtung ihres Spins unterscheiden.

Stoßen sich die beiden Teilchen stark ab, so wird man sie niemals zusammen auf einer Seite des Doppeltopfes finden, da dieser Zustand aufgrund der Energieerhaltung nicht erlaubt ist. Allerdings beobachtet man einen Austausch der beiden Atome: War zunächst das Atom mit nach oben gerichtetem Spin auf der linken Seite zu finden, so wird es nach einer bestimmten Zeit rechts auftauchen, während das andere Atom mit entgegengerichtetem Spin von rechts nach links gewandert ist. Die Grundlage für diesen Vorgang ist ein synchroner Hüpfprozess der beiden Teilchen oder formal ein Tunnelprozess zweiter Ordnung. Bereits im Sommer war es den Mainzer Wissenschaftlern gelungen, einen ähnlichen Tunnelprozess, bei dem zwei Teilchen trotz starker Abstoßung eine Schranke nur gemeinsam überwinden, erstmals mit ultrakalten Atomen direkt zu beobachten. Hier durchqueren nun beide Atome in entgegengesetzter Richtung simultan die Barriere. Die Austauschrate, also die Häufigkeit mit der die beiden ihren Platz tauschen, hängt dabei von der Höhe der Barriere und der Stärke der Abstoßung der Atome ab. Beide Größen lassen sich im Experiment über einen weiten Bereich mit großer Genauigkeit einstellen.

Der Platzwechsel der beiden Atome mit unterschiedlichem Spin lässt sich physikalisch als eine Wechselwirkung zwischen den Spins beschreiben. Bemerkenswert ist dabei, dass kein direkter Kontakt zwischen den zwei Atomen benötigt wird. Allein die Form des Doppeltopfes, in dem die beiden Teilchen gefangen sind, bestimmt die Art der Wechselwirkung und damit die magnetischen Eigenschaften der Festkörperminiatur. Die im Experiment gezeigte Möglichkeit, die magnetische Natur des Systems kontrolliert zu verändern, ist dabei einzigartig. In Zukunft wollen die Forscher diese Eigenschaften des Systems nutzen, um exotische Vielteilchenzustände zu erzeugen, von denen einige Ausgangspunkte für neuartige Methoden des Quantenrechnens sein können.

S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E.A. Demler, M.D. Lukin and I. Bloch: Time-resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices. Science Express, 20. Dezember 2007, DOI: 10.1126/science.1150841

Kontakt und Informationen:
Dipl.-Phys. Stefan Trotzky
Tel. +49 6131 39-25955
Fax +49 6131 39-23428
E-Mail: trotzky@uni-mainz.de
Univ.-Prof. Dr. Immanuel Bloch
Tel. +49 6131 39-26234
Fax +49 6131 39-25179
E-Mail: bloch@uni-mainz.de
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz

Petra Giegerich | idw
Weitere Informationen:
http://www.quantum.physik.uni-mainz.de/
http://www.sciencemag.org/cgi/content/abstract/1150841

Weitere Berichte zu: Atom Spin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften