Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Kristall schlägt zurück

21.12.2007
Der Kavalierstart von Elektronen in einem Kristall bleibt nicht ohne Folgen für ihr weiteres Schicksal. Das berichten die Berliner Forscher Peter Gaal, Wilhelm Kühn, Klaus Reimann, Michael Woerner, und Thomas Elsässer vom Max-Born-Institut sowie Rudolf Hey vom Paul- Drude-Institut in der jüngsten Ausgabe der Zeitschrift Nature (Bd. 450, Seite 1210).

Sie untersuchten die ultraschnelle Bewegung von Elektronen in einem Galliumarsenidkristall, der für kurze Zeit einem sehr hohen elektrischen Feld ausgesetzt wurde. Dieses auch konzeptionell neue Experiment zeigt erstmals eine kollektive, ultrahochfrequente Zitterbewegung der Elektronen, die zusätzlich zur bekannten räumlichen Drift dieser Teilchen auftritt. Der neu entdeckte Effekt könnte bei der Miniaturisierung von elektronischen Bauteilen eine wichtige Rolle spielen.

Galliumarsenid (GaAs) ist eines der wichtigsten Materialien für die Halbleiter-Optoelektronik. Ein GaAs-Kristall besteht aus einem regelmäßigen Gitter von Gallium- und Arsen-Atomen, wobei die Galliumatome leicht positiv und die Arsenatome leicht negativ geladen sind. Wenn sich ein Elektron langsam durch den Kristall bewegt, führt dies zu einer Verzerrung des Kristallgitters in seiner Umgebung. Die negative elektrische Ladung des Elektrons stößt negativ geladene Atome ab und zieht positiv geladene an. Hierdurch werden die Atome in Schwingungen um ihre Ruhelage versetzt: Gitterschwingungen, so genannte Phononen, entstehen. „Das kann man sich vorstellen wie bei einem schweren Ball, der über eine Matratze rollt“, erläutert Michael Woerner. „Die Metallfedern der Matratze werden zusammengedrückt und entspannen sich wieder.“ Durch die Erzeugung von Gitterschwingungen verliert das Elektron Energie und wird in seiner Bewegung gebremst. Diese Abbremsung ist nichts anderes als der elektrische Widerstand eines Materials. Dabei driften die Elektronen mit konstanter Geschwindigkeit durchs Gitter. Dieses physikalische Bild ist die Grundlage des seit etwa hundert Jahren bekannten Ohm'schen Gesetzes für den elektrischen Widerstand.

Eine gänzlich neue Situation tritt auf, wenn die Elektronen einen Kavalierstart hinlegen, das heißt wenn sie – durch ein extrem hohes elektrisches Feld – schneller als die Reaktionszeit der Atome in ihrer Umgebung beschleunigt werden. Die Berliner Forscher verwenden zur Beschleunigung ein elektrisches Feld von 2 Millionen Volt pro Meter, das sie für eine extrem kurze Dauer von 0,3 Pikosekunden (1 Pikosekunde ist ein Millionstel einer Millionstel Sekunde) an den Kristall anlegen. Die hierdurch hervorgerufene Bewegung der Elektronen bilden sie mit ultrakurzen Lichtimpulsen im infraroten Spektralbereich ab. Im Gegensatz zur Driftbewegung mit konstanter Geschwindigkeit, die man bei kleinen elektrischen Feldern findet, wechselt überraschenderweise die Geschwindigkeit der beschleunigten Elektronen periodisch zwischen hohen und niedrigen Werten, das Elektron führt eine Art Zitterbewegung aus. Theoretische Berechnungen haben dieses experimentell gefundene Verhalten quantitativ bestätigt.

... mehr zu:
»Atom »Kristall

Der Leiter der Forschergruppe, MBI-Direktor Prof. Thomas Elsässer, sagt: „Die Tatsache, dass schnell beschleunigte Elektronen einerseits Schwingungen der Atome anregen und andererseits von den schwingenden Atomen abwechselnd gebremst und beschleunigt werden, ist von großer Bedeutung für den Ladungstransport in Nanostrukturen.“ Dort könnten aufgrund der geringen Abmessungen ähnlich starke elektrische Felder auftreten. Elsässer fügt hinzu: „Unsere Ergebnisse bilden deshalb auch eine Grundlage für die Optimierung der Transporteigenschaften von Halbleiter-Nanobauelementen.“

Ansprechpartner:
Dr. Michael Woerner (030 / 6392-1470, woerner@mbi-berlin.de )
Prof. Klaus Reimann (-1476, reimann@mbi-berlin.de)
Prof. Thomas Elsässer (-1400, elsasser@mbi-berlin.de )
Quelle: P. Gaal et al. „ Internal motions of a quasiparticle governing its ultrafast nonlinear response” in Nature, Bd. S. 450, S. 1210-1213

Josef Zens | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Atom Kristall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen