Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnellere Röntgeninterferometer durch Einzelphotoneninterferenz

18.12.2007
Mit Röntgeninterferometern können Längen bis in den mm-Bereich mit einer Auflösung von unter einem nm gemessen werden. Die geringe Translationsgeschwindigkeit der Interferometer, die den Einsatz in der Praxis erschwerte, konnte jetzt um den Faktor 100 gesteigert werden, indem die zeitliche Korrelation einzeln interferierender Röntgenphotonen ausgenutzt wurde.

Rontgeninterferometer konnen Langen im mm-Bereich mit Sub-nm-Auflosung messen, wobei das nahezu perfekte Kristallgitter von hochreinem Silicium als Langenskale genutzt wird. Die Dimensionen beliebiger sub-µm-strukturierter Proben werden dabei mit dem Gitterparameter von Silicium (alpha0~ 0,543... nm) verglichen, der im Projekt zur Neubestimmung der Avogadrokonstanten extrem präzise bestimmt wurde. Für messtechnische Anwendungen im Zusammenhang mit Rastersondenmikroskopen sind solche Messungen von großer Bedeutung.

Einer weiteren Verbreitung dieser Methode standen aber bisher geringe Translationsgeschwindigkeiten von nur 1 nm/s bis 10 nm/s entgegen. Sie sind Folge der begrenzten Intensität typischer Labor-Röntgenquellen: Die notwendige Filterung des periodischen Interferenzsignals führt zu einer Kontrastverminderung, die bei einer klassischen Messung ein langsames Verfahren des Interferometers erforderlich macht.

Quantenmechanisch kommt es aber auch in einem stark "verdünnten" Strom von Röntgenphotonen zur Interferenz: Als Wellenpaket betrachtet, folgen selbst einzelne Photonen in ihrem zeitlichen Auftreffen auf den Detektor der gleichen Wahrscheinlichkeit, die im Fall ausreichend intensiven Röntgenlichts zu dem kontinuierlichen Signal führt, dessen Periode man bestimmen möchte. Dieser wohlbekannte quantenmechanische Sachverhalt wird nun gezielt ausgenutzt: Protokolliert man die Zeiten, zu denen die einzelnen Photonen auftreffen, kann man durch eine anschließende Fouriertransformation dieser Zeitreihe sehr genau die Frequenz bestimmen, mit der die Gitterperioden durchfahren wurden. Bei konstanter Geschwindigkeit lässt sich damit die Weginformation rekonstruieren und man erhält die gleiche Information wie bei der klassischen Messung, aber in sehr viel kürzerer Zeit.

So konnten Translationsgeschwindigkeiten bis zu 1000 nm/s realisiert werden. Die Methode wird in Zukunft nicht nur in weiter verbesserten Messplätzen zur Bestimmung des Gitterparameters von Silicium, sondern darüber hinaus auch für andere Längenmessungen in der Nanotechnologie eingesetzt werden.

Weitergehende Informationen von
U. Kuetgens,
Tel.: (0531) 592-4330,
E-Mail: ulrich.kuetgens@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/de/publikationen/news/html/news073/artikel/07302.htm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE