Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protonen - alles dreht sich um den Spin

17.12.2007
Das aktuelle Verständnis der Spin-Struktur von Protonen ist jetzt erstmals in einem Buch zusammengefasst worden. Das Werk nähert sich der Klärung eines großen Rätsels der Physik: Eine fundamentale Eigenschaft von Protonen ­ der Spin ­ kann mit bisherigen Modellen und Experimenten nicht vollständig erklärt werden. Das von Dr. Steven Bass im Rahmen eines Projekts des Wissenschaftsfonds FWF veröffentlichte Buch fasst über 1000 Veröffentlichungen und ein globales Forschungsprogramm zu diesem Phänomen zusammen.

Viele Elementarteilchen rotieren wie ein Kreisel um die eigene Achse. Im Gegensatz zu Kreiseln hat dieses als Spin bezeichnete Drehmoment aber fundamentalen Einfluss auf die Eigenschaften des Elementarteilchens ­ und damit auf unsere Welt. So wird aufgrund von quantenphysikalischen Zusammenhängen das magnetische Moment von Protonen ebenso wie der Zusammenhalt des Universums vom Spin beeinflusst. Eine wahrhaft fundamentale Kraft also. Umso bedenklicher, dass die Ursache von 30 Prozent des Spins von Protonen experimentell nicht zu erklären ist.

SPIN DOCTOR
Dr. Steven Bass, Institut für Theoretische Physik der Universität Innsbruck und Mitarbeiter am CERN (Conseil Européen pour la Recherche Nucléaire), hat nun den Wissensstand über diese Diskrepanz in einem Buch zusammengefasst.

Neben 1000 theoretischen Veröffentlichungen hat er dazu auch die Ergebnisse eines weltweiten Forschungsprogramms zusammengetragen, das an den Teilchenbeschleunigern von CERN, vom Deutschen Elektron-Synchrotron (DESY), vom Brookhaven National Laboratory (BNL), vom Jefferson Laboratory (JLab) und vom Stanford Linear Accelerator Center (SLAC), durchgeführt wird.

... mehr zu:
»Gluonen »ProTon »Spin

Dr. Bass zum "missing spin" der Protonen: "Protonen sind aus den Elementarteilchen Quarks und Gluonen aufgebaut. Wobei drei Quarks pro Proton von den Gluonen zusammengehalten werden. Wie die Protonen haben auch die Quarks und Gluonen einen eigenen Spin. Der Spin des Protons ergibt sich dabei aus dem Spin seiner Bestandteile. So erklären gängige Modelle, dass 60 Prozent des Spins der Protonen vom Spin der Quarks stammen müssen. Der Rest würde von anderen Bewegungen der Quarks innerhalb des Protons verursacht werden. Doch Experimente an einigen der leistungsstärksten Teilchenbeschleunigern der Welt kommen zu dem Ergebnis, dass maximal 30 Prozent des Spins der Protonen vom Spin der Quarks stammen. Wo kommt also der Rest her?"

Um genau diese Frage zu klären, wurde nicht nur das erwähnte globale Forschungsprogramm begonnen, sondern es wurden auch in zahlreichen Veröffentlichungen Berechnungen angestellt. Diese Anstrengungen liefern nun erste Ergebnisse, die Dr. Bass in seinem Buch zusammengefasst hat.

HYPOTHESE: MESSUNG FALSCH!
Diese Ergebnisse führten zunächst zu der Überlegung, dass die Diskrepanz in Wirklichkeit auf Messungsungenauigkeiten zurückzuführen sei ­ also gar keine wirkliche Diskrepanz darstellt. Der Gedanke dahinter: Der Spin der Gluonen ­ jene Partikel, die zum Zusammenhalt der Quarks beitragen ­ schirmt in Abhängigkeit seiner Polarisation den Spin der Quarks ab. Das würde dessen Messung beeinflussen und in der Folge zur Verzerrung der Berechnung führen.

Doch schon bald lieferten andere Experimente Daten, die dieser These widersprachen. Diesen zufolge ist die Polarisation der Gluonen nicht stark genug, um die "fehlenden" 30 Prozent des Spins der Quarks zu erklären. In naher Zukunft aber werden Berechnungen von noch genaueren Messungen verfügbar sein und neue Erkenntnisse liefern ­ oder bestehende widerlegen.

Unser bisheriges Verständnis darüber, was Protonen ­ oder aber das Universum ­ zusammenhält, wird somit immer häufiger in Frage gestellt. So kommt für Dr. Bass, der gleichzeitig ein thematisch verwandtes FWF-Projekt leitet, seine Buchpublikation zum richtigen Zeitpunkt: "Die Ergebnisse neuer und immer genauerer Messungen müssen im Licht des aktuellen Wissensstands beurteilt werden. Mit diesem Werk hoffe ich dazu beitragen zu können."

Buchreferenz: The Spin Structure of the Proton. By Steven D. Bass, Publisher World Scientific, ISBN 978-981-270-9479.


Wissenschaftlicher Kontakt:
Dr. Steven Bass
Universität Innsbruck
Institut für Theoretische Physik
6020 Innsbruck
M +43 / 676 / 316 93 82
E Steven.Bass@uibk.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at

Dr. Steven Bass | PR&D
Weitere Informationen:
http://www.uibk.ac.at
http://www.fwf.ac.at/de/public_relations/press/pv200712-de.html
http://www.fwf.ac.at

Weitere Berichte zu: Gluonen ProTon Spin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics