Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Berge und Täler aus Graphen

28.01.2013
Bei komplizierten Oberflächenstrukturen stoßen auch Elektronenmikroskope an ihre Grenzen. Berechnungen der TU Wien gewähren trotzdem verlässliche Einblicke in die Mikrostruktur von Graphen.

Bringt man Graphen auf anderen Materialien auf, können sich sogenannte „Superstrukturen“ bilden – regelmäßige Anordnungen winziger Berge und Täler. Sie sind mit herkömmlicher Elektronenmikroskopie schwer zu untersuchen. Berechnungen der TU Wien erklären, warum Berge manchmal wie Täler aussehen können, und umgekehrt.


Graphen auf Iridium
TU Wien

Graphen schlägt Wellen

Graphen besteht aus einer einzelnen Lage sechseckig angeordneter Kohlenstoff-Atome. Oft bringt man eine Graphen-Schicht auf einem Untergrund aus einem anderen Material auf, um es stabil zu halten. Fixiert man Graphen auf einem Iridium-Untergrund, lässt sich ein interessanter Effekt beobachten: „Die Graphen-Oberfläche bleibt nicht eben, sie formt regelmäßige Berge und Täler“, erklärt Florian Mittendorfer vom Institut für Angewandte Physik der TU Wien, der diese Oberflächen gemeinsam mit seinem Doktorats-Studenten Andreas Garhofer in umfangreichen Computersimulationen untersuchte.

Die Iridium-Atome ordnen sich in gleichseitigen Dreiecken an, deren 60-Grad-Winkel eigentlich gut zur Bienenwaben-Struktur der Graphen-Schicht passen würden. Allerdings entsprechen die Abstände zwischen den Kohlenstoff-Waben im Graphen nicht genau dem Abstand zwischen den Iridium-Atomen. Wenn eine Kohlenstoff-Wabe genau auf einem Iridium-Atom zu liegen kommt, dann sind die jeweiligen Nachbarn leicht gegeneinander verschoben – erst jede zehnte Kohlenstoff-Wabe befindet sich dann wieder genau auf einem Iridium-Atom. „Dadurch wölbt sich das Graphen und es ergibt sich ein Oberflächen-Muster aus winzigen Bergen und Tälern“, erklärt Florian Mittendorfer.

Berg und Tal verwechselt?

Diese Graphen-Strukturen sind wissenschaftlich sehr interessant – man könnte sie etwa verwenden, um genau in den Tälern Metall aufzudampfen und winzige Cluster herzustellen. Allerdings stellen die Strukturen selbst modernste Mikroskope vor ernste Probleme: „Wählt man einen ungünstigen Abstand zwischen Mikroskop-Spitze und Oberfläche, dann sehen plötzlich die Berge wie Täler aus, und umgekehrt. Bei einem ganz bestimmten Abstand erscheint für das Mikroskop die ganze Oberfläche glatt“, sagt Mittendorfer.

In der Elektronenmikroskopie führt man eine scharfe Spitze in winzigem Abstand über die Oberfläche, die untersucht werden soll. Bei Rastertunnelmikroskopen wird der elektrische Strom gemessen, der entsteht, wenn einzelne Elektronen aus der Oberfläche in die Mikroskop-Spitze überwechseln. Bei Rasterkraftmikroskopen hingegen wird aus der Kraft, die zwischen der Spitze und der Oberfläche wirkt, auf die Struktur der Oberfläche geschlossen.

„Dass man sowohl mit Rastertunnelmikroskopen als auch bei Rasterkraftmikroskopen auf Schwierigkeiten stößt, ist zunächst überraschend. Unsere Rechnungen erklären allerdings, warum das so ist“, sagt Florian Mittendorfer. Ein größerer Abstand zwischen der Graphenlage und der Mikroskopspitze bedeutet nicht automatisch, dass die Kraft zwischen Oberfläche und Spitze geringer wird, der Zusammenhang ergibt sich aus der Anordnung der Atome in der Oberfläche. „Die Krümmung der Graphen-Fläche führt zu einem komplexen Zusammenhang zwischen Abstand und Kraft“, erklärt Mittendorfer.

Materialwissenschaft: Forschungsschwerpunkt der TU Wien

An der Freien Universität Berlin, der Universität Konstanz und bei der Firma SPECS wurden Experimente zu diesen Effekten durchgeführt, die TU-Physiker steuerten mit Kollegen von der Freien Universität Berlin aufwändige Computersimulationen dazu bei. Materialwissenschaft am Computer hat an der TU Wien eine lange Tradition: Gemeinsam mit der Universität Wien wird das „Center for Computational Materials Science“ (CMS) betrieben, das mehrere höchst erfolgreiche Forschungsgruppen miteinander verbindet. Das Softwarepaket VASP zur quantenphysikalischen Berechnung von Materialien wird dort entwickelt, verbessert und auf konkrete wissenschaftliche Fragestellungen angewandt. Computerprogramme aus Wien werden mittlerweile auf der ganzen Welt eingesetzt.

Rückfragehinweis:
Dr. Florian Mittendorfer
Institut für Angewandte Physik
Technische Universität Wien
Gusshausstraße 25, 1040 Wien
T: +43-1-58801-15837
florian.mittendorfer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise