Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Berge und Täler aus Graphen

28.01.2013
Bei komplizierten Oberflächenstrukturen stoßen auch Elektronenmikroskope an ihre Grenzen. Berechnungen der TU Wien gewähren trotzdem verlässliche Einblicke in die Mikrostruktur von Graphen.

Bringt man Graphen auf anderen Materialien auf, können sich sogenannte „Superstrukturen“ bilden – regelmäßige Anordnungen winziger Berge und Täler. Sie sind mit herkömmlicher Elektronenmikroskopie schwer zu untersuchen. Berechnungen der TU Wien erklären, warum Berge manchmal wie Täler aussehen können, und umgekehrt.


Graphen auf Iridium
TU Wien

Graphen schlägt Wellen

Graphen besteht aus einer einzelnen Lage sechseckig angeordneter Kohlenstoff-Atome. Oft bringt man eine Graphen-Schicht auf einem Untergrund aus einem anderen Material auf, um es stabil zu halten. Fixiert man Graphen auf einem Iridium-Untergrund, lässt sich ein interessanter Effekt beobachten: „Die Graphen-Oberfläche bleibt nicht eben, sie formt regelmäßige Berge und Täler“, erklärt Florian Mittendorfer vom Institut für Angewandte Physik der TU Wien, der diese Oberflächen gemeinsam mit seinem Doktorats-Studenten Andreas Garhofer in umfangreichen Computersimulationen untersuchte.

Die Iridium-Atome ordnen sich in gleichseitigen Dreiecken an, deren 60-Grad-Winkel eigentlich gut zur Bienenwaben-Struktur der Graphen-Schicht passen würden. Allerdings entsprechen die Abstände zwischen den Kohlenstoff-Waben im Graphen nicht genau dem Abstand zwischen den Iridium-Atomen. Wenn eine Kohlenstoff-Wabe genau auf einem Iridium-Atom zu liegen kommt, dann sind die jeweiligen Nachbarn leicht gegeneinander verschoben – erst jede zehnte Kohlenstoff-Wabe befindet sich dann wieder genau auf einem Iridium-Atom. „Dadurch wölbt sich das Graphen und es ergibt sich ein Oberflächen-Muster aus winzigen Bergen und Tälern“, erklärt Florian Mittendorfer.

Berg und Tal verwechselt?

Diese Graphen-Strukturen sind wissenschaftlich sehr interessant – man könnte sie etwa verwenden, um genau in den Tälern Metall aufzudampfen und winzige Cluster herzustellen. Allerdings stellen die Strukturen selbst modernste Mikroskope vor ernste Probleme: „Wählt man einen ungünstigen Abstand zwischen Mikroskop-Spitze und Oberfläche, dann sehen plötzlich die Berge wie Täler aus, und umgekehrt. Bei einem ganz bestimmten Abstand erscheint für das Mikroskop die ganze Oberfläche glatt“, sagt Mittendorfer.

In der Elektronenmikroskopie führt man eine scharfe Spitze in winzigem Abstand über die Oberfläche, die untersucht werden soll. Bei Rastertunnelmikroskopen wird der elektrische Strom gemessen, der entsteht, wenn einzelne Elektronen aus der Oberfläche in die Mikroskop-Spitze überwechseln. Bei Rasterkraftmikroskopen hingegen wird aus der Kraft, die zwischen der Spitze und der Oberfläche wirkt, auf die Struktur der Oberfläche geschlossen.

„Dass man sowohl mit Rastertunnelmikroskopen als auch bei Rasterkraftmikroskopen auf Schwierigkeiten stößt, ist zunächst überraschend. Unsere Rechnungen erklären allerdings, warum das so ist“, sagt Florian Mittendorfer. Ein größerer Abstand zwischen der Graphenlage und der Mikroskopspitze bedeutet nicht automatisch, dass die Kraft zwischen Oberfläche und Spitze geringer wird, der Zusammenhang ergibt sich aus der Anordnung der Atome in der Oberfläche. „Die Krümmung der Graphen-Fläche führt zu einem komplexen Zusammenhang zwischen Abstand und Kraft“, erklärt Mittendorfer.

Materialwissenschaft: Forschungsschwerpunkt der TU Wien

An der Freien Universität Berlin, der Universität Konstanz und bei der Firma SPECS wurden Experimente zu diesen Effekten durchgeführt, die TU-Physiker steuerten mit Kollegen von der Freien Universität Berlin aufwändige Computersimulationen dazu bei. Materialwissenschaft am Computer hat an der TU Wien eine lange Tradition: Gemeinsam mit der Universität Wien wird das „Center for Computational Materials Science“ (CMS) betrieben, das mehrere höchst erfolgreiche Forschungsgruppen miteinander verbindet. Das Softwarepaket VASP zur quantenphysikalischen Berechnung von Materialien wird dort entwickelt, verbessert und auf konkrete wissenschaftliche Fragestellungen angewandt. Computerprogramme aus Wien werden mittlerweile auf der ganzen Welt eingesetzt.

Rückfragehinweis:
Dr. Florian Mittendorfer
Institut für Angewandte Physik
Technische Universität Wien
Gusshausstraße 25, 1040 Wien
T: +43-1-58801-15837
florian.mittendorfer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden
19.10.2017 | Forschungsverbund Berlin e.V.

nachricht Gravitationswellen: Sternenglanz für Jenaer Forscher
19.10.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy