Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beobachtungen einer weit entfernten, gewaltigen Explosion zeigen überraschende Bestandteile früher Galaxien

02.11.2011
Ein internationales Astronomenteam unter der Leitung des Max-Planck-Instituts für extraterrestrische Physik benutzte das kurze aber helle Aufleuchten eines weit entfernten Gammastrahlenausbruchs (GRB vom englischen Gamma-Ray Burst) um den Aufbau entfernter Galaxien zu untersuchen.

Überraschenderweise zeigten die Beobachtungen, dass zwei Galaxien im jungen Universum mehr schwere Elemente enthalten als die Sonne. Die beiden Galaxien könnten gerade miteinander verschmelzen. Derartige Vorgänge im jungen Universum dürften zur Entstehung von vielen neuen Sternen führen und könnten Gammastrahlenausbrüche auslösen.

Gammastrahlenausbrüche (GRB vom englischen Gamma-Ray Burst) sind die hellsten Explosionen im Universum. Sie werden zuerst von Observatorien im Weltraum aufgespürt, die den anfänglichen, kurzen Gammastrahlenblitz aufzeichnen. Nachdem ihre genaue Position bestimmt ist, werden sie sofort mit großen, bodengebundenen Teleskopen beobachtet, die das sichtbare und infrarote Nachglühen der GRBs über Stunden und Tage hinweg aufzeichnen können. Ein derartiger Blitz, mit der Bezeichnung GRB 090323 wurde zuerst vom "Gamma-ray Space Telescope" der NASA entdeckt. Schon bald danach fingen der Röntgendetektor auf dem Swift-Satelliten und das GROND-System am MPG/ESO-2,2m-Teleskop das Signal auf. Mit den GROND-Daten konnten die Astronomen einen Mindestwert für die Sternentstehungsrate abschätzen, die ein Vielfaches derjenigen in unserer Galaxie betragen muss. Dieser Minimalwert rührt daher, dass die beobachtete Strahlung durch den Staub der Galaxien beeinflusst (genauer gesagt absorbiert) wird. Die tatsächliche Sternentstehungsrate könnte, wenn man die (unbekannte) Absorption durch Staub berücksichtigt, leicht 50 Mal höher sein, als in unserer Milchstraße.

Der GRB wurde auch im Detail mit dem "Very Large Telescope" (VLT) der ESO untersucht, nur einen Tag nach der Explosion. Diese Beobachtungen zeigen, dass das helle Licht des GRB durch seine eigene Galaxie und eine weitere, nahe Galaxie hindurch scheint. Man sieht diese Galaxien, wie sie vor etwa 12 Milliarden Jahre ausgesehen haben. Derart weit entfernte Galaxien werden nur selten vom Licht eines Gammastrahlenausbruchs angestrahlt. "Als wir das Licht dieses GRB analysierten, wussten wir noch nicht, was wir finden würden. Es war eine große Überraschung für uns, dass das kalte Gas in diesen beiden Galaxien im frühen Universum solch eine unerwartete chemische Zusammensetzung hatte", erklärt Sandra Savaglio (Max-Planck-Institut für extraterrestrische Physik), die Erstautorin des Artikels, der die neuen Ergebnisse beschreibt. "Diese Galaxien enthalten mehr schwere Elemente als man je in einer Galaxie so früh im Universum gesehen hat. Wir haben nicht erwartet, dass das Universum sich so früh chemisch schon so weit entwickelt hat."

Als das Licht des GRB durch die Galaxien hindurchschien, fungierte das dort vorhandene Gas wie ein Filter und absorbierte das Licht bei bestimmten Wellenlängen. Ohne den GRB wären diese schwach leuchtenden Galaxien unsichtbar. Durch eine sorgfältige Analyse der charakteristischen "Fingerabdrücke" der unterschiedlichen chemischen Elemente konnte das Team die Zusammensetzung des kühlen Gases in diesen weit entfernten Galaxien bestimmen, insbesondere wie reich sie an schweren Elementen waren.

Man erwartet, dass Galaxien im jungen Universum geringere Mengen an schweren Elementen enthalten als die Galaxien heute, wie die Milchstraße. Diese schwereren Elemente werden von Generationen an Sternen während ihres Lebens und Sterbens produziert und reichern sich im Gas der Galaxien an. Astronomen können anhand der chemischen Anreicherung in Galaxien bestimmen, wie weit sich diese bereits entwickelt haben. Die neuen Beobachtungen zeigen allerdings überraschenderweise, dass einige Galaxien bereits weniger als zwei Milliarden Jahre nach dem Urknall einen sehr großen Anteil an schweren Elementen enthalten - etwas, das bis vor Kurzem undenkbar gewesen wäre.

Das neu entdeckte Galaxienpaar muss in ungeheurem Tempo neue Sterne bilden, um das kalte Gas so schnell und stark anreichern zu können. Da die beiden Galaxien sich sehr nahe sind, könnten sie gerade miteinander verschmelzen, was zu Sternentstehung führen würde, wenn die Gaswolken zusammenstoßen. Die neuen Ergebnisse bestätigen auch die Theorie, dass Gammastrahlenausbrüche mit heftiger Sternentstehung einhergehen.

Die energiereiche Sternentstehung in Galaxien wie diesen könnte schon früh in der Geschichte des Universums zum Erliegen gekommen sein. Zwölf Milliarden Jahre später, also heute, würden die Überbleibsel derartiger Galaxien eine große Zahl an Sternüberresten, wie Schwarze Löcher und kühle Zwergsterne, enthalten. Damit würden sie eine schwer zu entdeckende Population an "toten Galaxien" bilden, die nur blasse Schatten ihrer strahlenden Jugend sind. Derartige Leichen heute aufzuspüren würde eine große Herausforderung darstellen.

"Wir können uns glücklich schätzen, dass wir GRB 090323 beobachten konnten, als er noch hell genug geleuchtet hat. So war es uns möglich diese spektakulären, detaillierten Beobachtungen mit dem VLT zu machen. Gammastrahlenausbrüche sind nur sehr kurze Zeit so hell und qualitativ hochwertige Daten zu erhalten ist sehr schwer. Wir hoffen, dass wir diese Galaxien in Zukunft wieder beobachten können, wenn wir sehr viel empfindlichere Instrumente haben - sie wären eine perfekte Aufgabe für das E-ELT", sagt Savalio.

Kontakt :
Dr. Sanda Savaglio
Astronomin
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3358
Mobil: +49 151 5194 4223
E-Mail: savaglio@mpe.mpg.de
Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3980
E-Mail: hanneh@mpe.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Zirkuläre Wirtschaft: Neues Wirtschaftsmodell für die chemische Industrie?

28.07.2017 | Studien Analysen

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie