Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beobachtungen einer weit entfernten, gewaltigen Explosion zeigen überraschende Bestandteile früher Galaxien

02.11.2011
Ein internationales Astronomenteam unter der Leitung des Max-Planck-Instituts für extraterrestrische Physik benutzte das kurze aber helle Aufleuchten eines weit entfernten Gammastrahlenausbruchs (GRB vom englischen Gamma-Ray Burst) um den Aufbau entfernter Galaxien zu untersuchen.

Überraschenderweise zeigten die Beobachtungen, dass zwei Galaxien im jungen Universum mehr schwere Elemente enthalten als die Sonne. Die beiden Galaxien könnten gerade miteinander verschmelzen. Derartige Vorgänge im jungen Universum dürften zur Entstehung von vielen neuen Sternen führen und könnten Gammastrahlenausbrüche auslösen.

Gammastrahlenausbrüche (GRB vom englischen Gamma-Ray Burst) sind die hellsten Explosionen im Universum. Sie werden zuerst von Observatorien im Weltraum aufgespürt, die den anfänglichen, kurzen Gammastrahlenblitz aufzeichnen. Nachdem ihre genaue Position bestimmt ist, werden sie sofort mit großen, bodengebundenen Teleskopen beobachtet, die das sichtbare und infrarote Nachglühen der GRBs über Stunden und Tage hinweg aufzeichnen können. Ein derartiger Blitz, mit der Bezeichnung GRB 090323 wurde zuerst vom "Gamma-ray Space Telescope" der NASA entdeckt. Schon bald danach fingen der Röntgendetektor auf dem Swift-Satelliten und das GROND-System am MPG/ESO-2,2m-Teleskop das Signal auf. Mit den GROND-Daten konnten die Astronomen einen Mindestwert für die Sternentstehungsrate abschätzen, die ein Vielfaches derjenigen in unserer Galaxie betragen muss. Dieser Minimalwert rührt daher, dass die beobachtete Strahlung durch den Staub der Galaxien beeinflusst (genauer gesagt absorbiert) wird. Die tatsächliche Sternentstehungsrate könnte, wenn man die (unbekannte) Absorption durch Staub berücksichtigt, leicht 50 Mal höher sein, als in unserer Milchstraße.

Der GRB wurde auch im Detail mit dem "Very Large Telescope" (VLT) der ESO untersucht, nur einen Tag nach der Explosion. Diese Beobachtungen zeigen, dass das helle Licht des GRB durch seine eigene Galaxie und eine weitere, nahe Galaxie hindurch scheint. Man sieht diese Galaxien, wie sie vor etwa 12 Milliarden Jahre ausgesehen haben. Derart weit entfernte Galaxien werden nur selten vom Licht eines Gammastrahlenausbruchs angestrahlt. "Als wir das Licht dieses GRB analysierten, wussten wir noch nicht, was wir finden würden. Es war eine große Überraschung für uns, dass das kalte Gas in diesen beiden Galaxien im frühen Universum solch eine unerwartete chemische Zusammensetzung hatte", erklärt Sandra Savaglio (Max-Planck-Institut für extraterrestrische Physik), die Erstautorin des Artikels, der die neuen Ergebnisse beschreibt. "Diese Galaxien enthalten mehr schwere Elemente als man je in einer Galaxie so früh im Universum gesehen hat. Wir haben nicht erwartet, dass das Universum sich so früh chemisch schon so weit entwickelt hat."

Als das Licht des GRB durch die Galaxien hindurchschien, fungierte das dort vorhandene Gas wie ein Filter und absorbierte das Licht bei bestimmten Wellenlängen. Ohne den GRB wären diese schwach leuchtenden Galaxien unsichtbar. Durch eine sorgfältige Analyse der charakteristischen "Fingerabdrücke" der unterschiedlichen chemischen Elemente konnte das Team die Zusammensetzung des kühlen Gases in diesen weit entfernten Galaxien bestimmen, insbesondere wie reich sie an schweren Elementen waren.

Man erwartet, dass Galaxien im jungen Universum geringere Mengen an schweren Elementen enthalten als die Galaxien heute, wie die Milchstraße. Diese schwereren Elemente werden von Generationen an Sternen während ihres Lebens und Sterbens produziert und reichern sich im Gas der Galaxien an. Astronomen können anhand der chemischen Anreicherung in Galaxien bestimmen, wie weit sich diese bereits entwickelt haben. Die neuen Beobachtungen zeigen allerdings überraschenderweise, dass einige Galaxien bereits weniger als zwei Milliarden Jahre nach dem Urknall einen sehr großen Anteil an schweren Elementen enthalten - etwas, das bis vor Kurzem undenkbar gewesen wäre.

Das neu entdeckte Galaxienpaar muss in ungeheurem Tempo neue Sterne bilden, um das kalte Gas so schnell und stark anreichern zu können. Da die beiden Galaxien sich sehr nahe sind, könnten sie gerade miteinander verschmelzen, was zu Sternentstehung führen würde, wenn die Gaswolken zusammenstoßen. Die neuen Ergebnisse bestätigen auch die Theorie, dass Gammastrahlenausbrüche mit heftiger Sternentstehung einhergehen.

Die energiereiche Sternentstehung in Galaxien wie diesen könnte schon früh in der Geschichte des Universums zum Erliegen gekommen sein. Zwölf Milliarden Jahre später, also heute, würden die Überbleibsel derartiger Galaxien eine große Zahl an Sternüberresten, wie Schwarze Löcher und kühle Zwergsterne, enthalten. Damit würden sie eine schwer zu entdeckende Population an "toten Galaxien" bilden, die nur blasse Schatten ihrer strahlenden Jugend sind. Derartige Leichen heute aufzuspüren würde eine große Herausforderung darstellen.

"Wir können uns glücklich schätzen, dass wir GRB 090323 beobachten konnten, als er noch hell genug geleuchtet hat. So war es uns möglich diese spektakulären, detaillierten Beobachtungen mit dem VLT zu machen. Gammastrahlenausbrüche sind nur sehr kurze Zeit so hell und qualitativ hochwertige Daten zu erhalten ist sehr schwer. Wir hoffen, dass wir diese Galaxien in Zukunft wieder beobachten können, wenn wir sehr viel empfindlichere Instrumente haben - sie wären eine perfekte Aufgabe für das E-ELT", sagt Savalio.

Kontakt :
Dr. Sanda Savaglio
Astronomin
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3358
Mobil: +49 151 5194 4223
E-Mail: savaglio@mpe.mpg.de
Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3980
E-Mail: hanneh@mpe.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops