Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Begegnung am roten Planeten

09.10.2014

Die Marssonden bereiten sich auf den Vorbeiflug des Schweifsterns Siding Spring vor

Der Mars bekommt Besuch: Am 19. Oktober wird der Komet Siding Spring dicht an dem roten Planeten vorbeirasen. Ein Zusammenstoß ist zwar ausgeschlossen, doch der Schweif wird höchstwahrscheinlich in die Atmosphäre des Planeten eindringen.


Schweifstern im Fokus: Der Komet Siding Spring, aufgenommen mit dem Weltraumteleskop Hubble im Frühjahr 2014.

© NASA, ESA, and J.-Y. Li (Planetary Science Institute)


Enge Begegnung: Am 19. Oktober fliegt der Komet Siding Spring in einem Abstand von nur 132000 Kilometern am Mars vorbei.

© NASA

Den Raumsonden und Rovern, die den Mars derzeit erkunden, bietet sich die einzigartige Gelegenheit, das seltene Schauspiel ganz aus der Nähe zu verfolgen. Der Teilchendetektor ASPERA-3 etwa, der an Bord der ESA-Raumsonde Mars Express die Atmosphäre untersucht und an dem das Max-Planck-Institut für Sonnensystemforschung beteiligt ist, wird in den Stunden nach dem Vorbeiflug versuchen, Bestandteile des Kometenschweifs zu identifizieren.

Als der Komet mit der wissenschaftlichen Bezeichnung C/2013 A1 am 3. Januar 2013 im Blickfeld eines Teleskops am australischen Observatorium Siding Spring auftauchte, hielt er bereits Kurs auf den Mars. Sogar eine Kollision mit dem Roten Planeten erschien zunächst möglich. Genaue Beobachtungen in den Folgemonaten brachten die Entwarnung: Zu einem Zusammenstoß würde es zwar nicht kommen, der Komet jedoch würde den Mars in einem Abstand von nur etwa 132000 Kilometern passieren; dies entspricht in etwa einem Drittel der Entfernung zwischen Erde und Mond.

Dabei hätte sich der kosmische Gast keine günstigere Flugroute aussuchen können – zumindest aus wissenschaftlicher Sicht. Kein anderer Planet wird von so vielen Messinstrumenten vor Ort überwacht: Derzeit erforschen fünf Raumsonden den Mars aus einer Umlaufbahn, zwei Rover bahnen sich ihren Weg über die Oberfläche. In der Zeit des Vorbeiflugs werden all diese Instrumente ihren Blick auf das ungewohnte Forschungsobjekt richten und jedes Detail der einzigartigen Begegnung aufzeichnen.

Das gilt auch für den Teilchendetektor ASPERA-3 an Bord der ESA-Raumsonde Mars Express. Das Spektrometer – wie auch die Sonde selbst – gehört zu den betagteren Instrumenten: Seit 2003 misst es geladene und ungeladene Teilchen in der Atmosphäre und Umgebung unseres Nachbarplaneten.

Anders als etwa bei der neuen NASA-Raumsonde MAVEN, die den Mars erst vor wenigen Wochen erreichte, sind daher nicht zu strenge Sicherheitsvorkehrungen vorgesehen, um die Sonde vor dem heranrasenden Kometenstaub zu schützen. „ASPERA-3 wird während des gesamten Vorbeiflugs aktiv sein“, sagt denn auch Markus Fränz vom Max-Planck-Institut für Sonnensystemforschung.

„Wir erwarten, dass sich der Kometenschweif und die Marsatmosphäre zum Teil vermischen werden“, so Fränz. Die Wissenschaftler schätzen, dass Siding Spring pro Sekunde etwa 100 Kilogramm fremden Materials in die Marsatmosphäre eintragen wird.Das entspricht der Menge an Teilchen, die der Mars kontinuierlich ins All verliert. „Diese geringen Teilchendichten machen die Messungen zu einer großen Herausforderung“, so Fränz.

Dennoch hoffen die Forscher verfolgen zu können, wie sich die Zusammensetzung der Marsatmosphäre durch den vorbeirauschenden Gast verändert. Neben anderen Ionen und Molekülen müsste ASPERA-3 etwa Wassermoleküle aufspüren, die normalerweise in der oberen Marsatmosphäre nicht vorkommen. „Die Zusammensetzung des Schweifs von Siding Spring auf diese Weise zu entschlüsseln, liefert uns ein weiteres Puzzleteil zum Verständnis der Entstehung unseres Sonnensystems“, sagt Markus Fränz.

Die langperiodischen Kometen, zu denen auch Siding Spring zählt, entstammen der sogenannten Oortschen Wolke, einer Region in den Tiefen des Weltraums weit jenseits der Umlaufbahn des Neptuns. Fern der Sonne hat sich dieser Teil des Alls seit der Geburtsstunde des Planetensystems kaum verändert. Welche Stoffe liegen dort in welchem Verhältnis vor? Durch welche Vorgänge bildeten sich Kometen und andere gefrorene Brocken?

„Jeder Komet ist ein wenig anders“, meint Fränz. „Indem wir möglichst viele genau untersuchen, können wir uns ein immer besseres Bild von ihrem Entstehungsort machen.“ Am Mars könnte Siding Spring ein Teil dieses Geheimnisses preisgeben.

Ansprechpartner 

Dr. Birgit Krummheuer

Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon:+49 551 384979-462
 

Dr. Markus Fränz

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon:+49 5556 979-441
E-Mail:Fraenz@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8691969/komet_siding_spring

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen