Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beeinflussung supraleitender Plasmawellen mit Terahertz-Licht

12.07.2016

Terahertz-Bestrahlung verstärkt Josephson-Plasmawellen in Hochtemperatursupraleitern und bereitet möglicherweise einen Weg für die Stabilisierung fluktuierender Supraleitung

Die meisten Systeme in der Natur sind inhärent nichtlinear. Das bedeutet, dass ihre Reaktion auf äußere Anregungen nicht proportional zur Stärke des Auslöseimpulses ist. Nichtlinearitäten beobachtet man beispielsweise bei makroskopischen Phänomenen wie z.B. dem Fluss von Fluiden wie Wasser und Luft, oder dem Stromfluss in elektronischen Schaltkreisen. Die Manipulation nichtlinearen Verhaltens ist daher ein interessanter Ansatz, um Kontrolle über verschiedene Prozesse zu erlangen.


Josephson-Plasmawelle in einem geschichteten Supraleiter, parametrisch verstärkt durch einen starken Terahertz-Lichtpuls.

Bild: J.M. Harms/MPI für Struktur und Dynamik der Materie

Ein internationales Forscherteam unter der Führung von Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL in Hamburg hat nun die nichtlineare Wechselwirkung zwischen einem Terahertz-Lichtfeld und einer supraleitenden Plasmawelle in einem Hochtemperatursupraleiter genutzt, um Letztere zu verstärken.

Dies führte zu einem kohärenteren Supraleiter, der weniger anfällig für thermische Fluktuationen ist. Aufgrund der verlustfreien, supraleitenden Natur der Plasmawelle öffnet die Studie neue Wege für die „Plasmonik“, ein Forschungsgebiet, das sich unter anderem mit der Informationsübermittlung mithilfe von Plasmawellen befasst. Die Erkenntnisse sind in der Fachzeitschrift Nature Physics vorgestellt.

Der Josephson-Effekt

Der Josephson-Effekt, 1962 von Brian D. Josephson vorhergesagt, beschreibt das Tunneln von Cooper-Paaren durch eine dünne, isolierende Barriere zwischen zwei Supraleitern. Eine solche Supraleiter-Isolator-Supraleiter-Struktur nennt man Josephson-Kontakt. Dieser Effekt wurde bereits kurze Zeit später experimentell bestätigt und Josephson erhielt 1973 den Nobelpreis für Physik, da seine Vorhersage zu einem Nachweis für die makroskopische Quantennatur von Supraleitern führte.

Die Dynamik der Ladungsträger an einem Josephson-Kontakt wird durch die Josephson-Gleichungen bestimmt, welche aussagen, dass der Stromfluss der tunnelnden Cooper-Paare proportional zum Sinus des Phasenunterschieds zwischen den beiden Supraleitern ist. Wenn an den Josephson-Kontakt eine Spannung angelegt wird, oszilliert der Tunnelstrom zwischen den Supraleitern mit einer Frequenz, die vom Spannungsabfall abhängt.

Der Josephson-Effekt führte nicht nur zu grundlegenden Erkenntnissen in der Physik, sondern auch zu vielen Anwendungen, darunter sogenannte SQUIDs, das sind Sensoren zur genauen Messung extrem schwacher Magnetfelder. Diese werden unter anderem in der Medizin für die Messung von Gehirnströmungen (Magnetoenzephalographie) verwendet. Darüber hinaus finden Josephson-Kontakte heutzutage als extrem präzise Spannungsreferenz Einsatz. Dies liegt daran, dass der Josephson-Effekt ein Quanteneffekt ist, welcher Spannungen und Frequenzen (bzw. Zeit) einzig über Naturkonstanten in Beziehung zueinander setzt.

Zu aktuellen Forschungsthemen, die den Josephson-Effekt ausnutzen, gehören die Umsetzung von Qubits für Quantencomputer sowie photonische Bauelemente im Frequenzbereich von Gigahertz (GHz) bis Terahertz (THz).

Josephson-Plasmawellen in keramischen Supraleitern

Geschichtete Hochtemperatursupraleiter wie Kuprate – aufgebaut aus sich abwechselnden supraleitenden und isolierenden Schichten – sind Stapel von Josephson-Kontakten im Nanomaßstab. In diesen Materialien tritt supraleitender Transport zunächst innerhalb der Kupfer-Sauerstoff-Ebenen auf. Dreidimensionale Supraleitung entwickelt sich dann durch Josephson-Tunneln in senkrechter Richtung zu den Ebenen.

Analog zu den Maxwellgleichungen in der Elektrodynamik, deren Zeit- und Ortsabhängigkeit zu elektromagnetischen Wellen führt, führen die Josephson-Beziehungen zu den sogenannten Josephson-Plasmawellen. In Kupraten besitzen diese Wellen Frequenzen im THz-Bereich und können daher mit konventioneller THz-Spektroskopie untersucht werden.

Das Team um Andrea Cavalleri verwendete THz-Strahlung, um Josephson-Plasmawellen in mit Barium dotiertem Lanthan-Kupferoxid (La1.905Ba0.095CuO4) zu untersuchen. Über die Reflexion eines Abfragepulses konnten Sie Schwingungen mit einer Frequenz von etwa einem halben THz nachweisen. „Als wir den Supraleiter mit unseren schwachen Abfragepulsen bestrahlten, konnten wir Oszillationen des reflektierten Feldes mit einer bestimmten Frequenz, der sogenannten Josephson-Plasmafrequenz, beobachten“, sagt Srivats Rajasekaran, Erstautor der Arbeit und Postdoktorand am MPSD in Hamburg.

Nichtlinearitäten von Josephson-Plasmawellen und parametrische Verstärkung

Da Josephson-Plasmawellen den Josephson-Beziehungen unterliegen, sind sie von Natur aus nichtlinear. In der aktuellen Studie wurden diese Josephson-Plasmawellen mittels eines zusätzlichen, intensiven THz-Anregungspulses mit sehr großen Feldstärken von bis zu 100 kV/cm in einen hochgradig nichtlinearen Bereich gebracht. Eine derartig starke Anregung wurde durch die Ausnutzung jüngster Fortschritte in der THz-Technologie ermöglicht. In diesem Bereich ließ sich die Verstärkung der Josephson-Plasmawelle experimentell beobachten. „Der Reflexionsgrad der Probe wurde größer als 100% und darüber hinaus wurde der Absorptionskoeffizient negativ. Dies sind klare Anzeichen für Verstärkung innerhalb des Materials“, erklärt Srivats Rajasekaran.

Parametrische Verstärkung in einfachen oszillierenden Systemen, wobei Verstärkung durch die periodische Modulation eines bestimmten Parameters erreicht wird, ist ein gut verstandenes Phänomen. Beispielsweise verstärkt ein schaukelndes Kind die Stärke seiner Schwingung dadurch, dass es regelmäßig seinen Schwerpunkt anhebt und wieder absenkt. Ein Beispiel aus der Elektronik ist ein Schwingkreis mit periodisch veränderter Kapazität oder Induktivität. Parametrische Verstärker dieses Typs finden bei der rauschfreien Verstärkung schwacher Signale Anwendung (z.B. in der Radioastronomie). „Was die parametrische Verstärkung angeht, verhält sich ein geschichteter Supraleiter ganz ähnlich wie ein elektrischer Schwingkreis“, sagt Srivats Rajasekaran. „Der Josephson-Suprastrom ist wie ein Kabel, das die Platten eines Kondensators verbindet – in diesem Fall die Kupferoxidschichten.“ Die Induktivität des Suprastroms hängt von der Phasendifferenz zwischen den Ebenen ab, und diese Phasendifferenz ändert sich mit der Zeit und mit der Position innerhalb der Ebene.

„Als wir unseren intensiven Anregungspuls auf die Probe strahlten, oszillierte die Anregungs-Abfrage-Reaktion mit der doppelten Josephson-Plasmafrequenz. Das entspricht einer periodischen Modulation der Induktivität, welche für parametrische Verstärkung benötigt wird“, fügt Srivats Rajasekaran hinzu. „Dies ist das erste Mal, dass der Effekt parametrischer Verstärkung durch Lichtbestrahlung für Josephson-Plasmawellen nachgewiesen wurde“, erklärt Andrea Cavalleri, Direktor am MPSD in Hamburg.

Mögliche Anwendungen

Verstärkung von Josephson-Plasmawellen unter Ausnutzung der nichtlinearen Josephson-Beziehungen mittels THz-Pulsen fügt sich in eine Reihe mit den vorherigen Arbeiten zu geschichteten Supraleitern unter der Leitung von Andrea Cavalleri. In diesen wurde THz-Licht verwendet, um Supraleitung zwischen den Materialebenen aus- und anzuschalten und um supraleitende Solitonen zu erzeugen. Darüber hinaus hat die vorliegende Arbeit Auswirkungen auf die Kontrolle von Fluktuationen des Suprafluids. „Die Möglichkeit, das Suprafluid eines geschichteten Supraleiters parametrisch zu kontrollieren, könnte letztendlich ein Werkzeug zur Stabilisierung fluktuierender Supraleitung liefern, vielleicht sogar bei Temperaturen oberhalb der kritischen Temperatur“, schließt Andrea Cavalleri.

Diese Arbeit wurde durch den ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC) ermöglicht, welcher Wissenschaftler des MPSD, der Oxford University und weiterer Forschungseinrichtungen zusammenbringt. Weitere beteiligte Institutionen sind das Brookhaven National Laboratory, die University of Bath und die National University of Singapore. Das Center for Free-Electron Laser Science (CFEL) ist eine Kooperation von DESY, Max-Planck-Gesellschaft und Universität Hamburg.

Contact persons:

Dr. Srivats Rajasekaran
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6559
srivats.rajasekaran@mpsd.mpg.de

Prof. Dr. Andrea Cavalleri
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-5354
andrea.cavalleri@mpsd.mpg.de

Originalpublikation:

S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, S. R. Clark, D. Jaksch, and A. Cavalleri, “Parametric Amplification of a Superconducting Plasma Wave,” Nature Physics, Advance Online Publication, (July 11, 2016), DOI: 10.1038/nphys3819

Weitere Informationen:

http://dx.doi.org/10.1038/nphys3819 Originalpublikation
http://qcmd.mpsd.mpg.de/ Forschungsgruppe von Prof. Dr. Andrea Cavalleri
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten