Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beeinflussung supraleitender Plasmawellen mit Terahertz-Licht

12.07.2016

Terahertz-Bestrahlung verstärkt Josephson-Plasmawellen in Hochtemperatursupraleitern und bereitet möglicherweise einen Weg für die Stabilisierung fluktuierender Supraleitung

Die meisten Systeme in der Natur sind inhärent nichtlinear. Das bedeutet, dass ihre Reaktion auf äußere Anregungen nicht proportional zur Stärke des Auslöseimpulses ist. Nichtlinearitäten beobachtet man beispielsweise bei makroskopischen Phänomenen wie z.B. dem Fluss von Fluiden wie Wasser und Luft, oder dem Stromfluss in elektronischen Schaltkreisen. Die Manipulation nichtlinearen Verhaltens ist daher ein interessanter Ansatz, um Kontrolle über verschiedene Prozesse zu erlangen.


Josephson-Plasmawelle in einem geschichteten Supraleiter, parametrisch verstärkt durch einen starken Terahertz-Lichtpuls.

Bild: J.M. Harms/MPI für Struktur und Dynamik der Materie

Ein internationales Forscherteam unter der Führung von Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL in Hamburg hat nun die nichtlineare Wechselwirkung zwischen einem Terahertz-Lichtfeld und einer supraleitenden Plasmawelle in einem Hochtemperatursupraleiter genutzt, um Letztere zu verstärken.

Dies führte zu einem kohärenteren Supraleiter, der weniger anfällig für thermische Fluktuationen ist. Aufgrund der verlustfreien, supraleitenden Natur der Plasmawelle öffnet die Studie neue Wege für die „Plasmonik“, ein Forschungsgebiet, das sich unter anderem mit der Informationsübermittlung mithilfe von Plasmawellen befasst. Die Erkenntnisse sind in der Fachzeitschrift Nature Physics vorgestellt.

Der Josephson-Effekt

Der Josephson-Effekt, 1962 von Brian D. Josephson vorhergesagt, beschreibt das Tunneln von Cooper-Paaren durch eine dünne, isolierende Barriere zwischen zwei Supraleitern. Eine solche Supraleiter-Isolator-Supraleiter-Struktur nennt man Josephson-Kontakt. Dieser Effekt wurde bereits kurze Zeit später experimentell bestätigt und Josephson erhielt 1973 den Nobelpreis für Physik, da seine Vorhersage zu einem Nachweis für die makroskopische Quantennatur von Supraleitern führte.

Die Dynamik der Ladungsträger an einem Josephson-Kontakt wird durch die Josephson-Gleichungen bestimmt, welche aussagen, dass der Stromfluss der tunnelnden Cooper-Paare proportional zum Sinus des Phasenunterschieds zwischen den beiden Supraleitern ist. Wenn an den Josephson-Kontakt eine Spannung angelegt wird, oszilliert der Tunnelstrom zwischen den Supraleitern mit einer Frequenz, die vom Spannungsabfall abhängt.

Der Josephson-Effekt führte nicht nur zu grundlegenden Erkenntnissen in der Physik, sondern auch zu vielen Anwendungen, darunter sogenannte SQUIDs, das sind Sensoren zur genauen Messung extrem schwacher Magnetfelder. Diese werden unter anderem in der Medizin für die Messung von Gehirnströmungen (Magnetoenzephalographie) verwendet. Darüber hinaus finden Josephson-Kontakte heutzutage als extrem präzise Spannungsreferenz Einsatz. Dies liegt daran, dass der Josephson-Effekt ein Quanteneffekt ist, welcher Spannungen und Frequenzen (bzw. Zeit) einzig über Naturkonstanten in Beziehung zueinander setzt.

Zu aktuellen Forschungsthemen, die den Josephson-Effekt ausnutzen, gehören die Umsetzung von Qubits für Quantencomputer sowie photonische Bauelemente im Frequenzbereich von Gigahertz (GHz) bis Terahertz (THz).

Josephson-Plasmawellen in keramischen Supraleitern

Geschichtete Hochtemperatursupraleiter wie Kuprate – aufgebaut aus sich abwechselnden supraleitenden und isolierenden Schichten – sind Stapel von Josephson-Kontakten im Nanomaßstab. In diesen Materialien tritt supraleitender Transport zunächst innerhalb der Kupfer-Sauerstoff-Ebenen auf. Dreidimensionale Supraleitung entwickelt sich dann durch Josephson-Tunneln in senkrechter Richtung zu den Ebenen.

Analog zu den Maxwellgleichungen in der Elektrodynamik, deren Zeit- und Ortsabhängigkeit zu elektromagnetischen Wellen führt, führen die Josephson-Beziehungen zu den sogenannten Josephson-Plasmawellen. In Kupraten besitzen diese Wellen Frequenzen im THz-Bereich und können daher mit konventioneller THz-Spektroskopie untersucht werden.

Das Team um Andrea Cavalleri verwendete THz-Strahlung, um Josephson-Plasmawellen in mit Barium dotiertem Lanthan-Kupferoxid (La1.905Ba0.095CuO4) zu untersuchen. Über die Reflexion eines Abfragepulses konnten Sie Schwingungen mit einer Frequenz von etwa einem halben THz nachweisen. „Als wir den Supraleiter mit unseren schwachen Abfragepulsen bestrahlten, konnten wir Oszillationen des reflektierten Feldes mit einer bestimmten Frequenz, der sogenannten Josephson-Plasmafrequenz, beobachten“, sagt Srivats Rajasekaran, Erstautor der Arbeit und Postdoktorand am MPSD in Hamburg.

Nichtlinearitäten von Josephson-Plasmawellen und parametrische Verstärkung

Da Josephson-Plasmawellen den Josephson-Beziehungen unterliegen, sind sie von Natur aus nichtlinear. In der aktuellen Studie wurden diese Josephson-Plasmawellen mittels eines zusätzlichen, intensiven THz-Anregungspulses mit sehr großen Feldstärken von bis zu 100 kV/cm in einen hochgradig nichtlinearen Bereich gebracht. Eine derartig starke Anregung wurde durch die Ausnutzung jüngster Fortschritte in der THz-Technologie ermöglicht. In diesem Bereich ließ sich die Verstärkung der Josephson-Plasmawelle experimentell beobachten. „Der Reflexionsgrad der Probe wurde größer als 100% und darüber hinaus wurde der Absorptionskoeffizient negativ. Dies sind klare Anzeichen für Verstärkung innerhalb des Materials“, erklärt Srivats Rajasekaran.

Parametrische Verstärkung in einfachen oszillierenden Systemen, wobei Verstärkung durch die periodische Modulation eines bestimmten Parameters erreicht wird, ist ein gut verstandenes Phänomen. Beispielsweise verstärkt ein schaukelndes Kind die Stärke seiner Schwingung dadurch, dass es regelmäßig seinen Schwerpunkt anhebt und wieder absenkt. Ein Beispiel aus der Elektronik ist ein Schwingkreis mit periodisch veränderter Kapazität oder Induktivität. Parametrische Verstärker dieses Typs finden bei der rauschfreien Verstärkung schwacher Signale Anwendung (z.B. in der Radioastronomie). „Was die parametrische Verstärkung angeht, verhält sich ein geschichteter Supraleiter ganz ähnlich wie ein elektrischer Schwingkreis“, sagt Srivats Rajasekaran. „Der Josephson-Suprastrom ist wie ein Kabel, das die Platten eines Kondensators verbindet – in diesem Fall die Kupferoxidschichten.“ Die Induktivität des Suprastroms hängt von der Phasendifferenz zwischen den Ebenen ab, und diese Phasendifferenz ändert sich mit der Zeit und mit der Position innerhalb der Ebene.

„Als wir unseren intensiven Anregungspuls auf die Probe strahlten, oszillierte die Anregungs-Abfrage-Reaktion mit der doppelten Josephson-Plasmafrequenz. Das entspricht einer periodischen Modulation der Induktivität, welche für parametrische Verstärkung benötigt wird“, fügt Srivats Rajasekaran hinzu. „Dies ist das erste Mal, dass der Effekt parametrischer Verstärkung durch Lichtbestrahlung für Josephson-Plasmawellen nachgewiesen wurde“, erklärt Andrea Cavalleri, Direktor am MPSD in Hamburg.

Mögliche Anwendungen

Verstärkung von Josephson-Plasmawellen unter Ausnutzung der nichtlinearen Josephson-Beziehungen mittels THz-Pulsen fügt sich in eine Reihe mit den vorherigen Arbeiten zu geschichteten Supraleitern unter der Leitung von Andrea Cavalleri. In diesen wurde THz-Licht verwendet, um Supraleitung zwischen den Materialebenen aus- und anzuschalten und um supraleitende Solitonen zu erzeugen. Darüber hinaus hat die vorliegende Arbeit Auswirkungen auf die Kontrolle von Fluktuationen des Suprafluids. „Die Möglichkeit, das Suprafluid eines geschichteten Supraleiters parametrisch zu kontrollieren, könnte letztendlich ein Werkzeug zur Stabilisierung fluktuierender Supraleitung liefern, vielleicht sogar bei Temperaturen oberhalb der kritischen Temperatur“, schließt Andrea Cavalleri.

Diese Arbeit wurde durch den ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC) ermöglicht, welcher Wissenschaftler des MPSD, der Oxford University und weiterer Forschungseinrichtungen zusammenbringt. Weitere beteiligte Institutionen sind das Brookhaven National Laboratory, die University of Bath und die National University of Singapore. Das Center for Free-Electron Laser Science (CFEL) ist eine Kooperation von DESY, Max-Planck-Gesellschaft und Universität Hamburg.

Contact persons:

Dr. Srivats Rajasekaran
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6559
srivats.rajasekaran@mpsd.mpg.de

Prof. Dr. Andrea Cavalleri
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-5354
andrea.cavalleri@mpsd.mpg.de

Originalpublikation:

S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, S. R. Clark, D. Jaksch, and A. Cavalleri, “Parametric Amplification of a Superconducting Plasma Wave,” Nature Physics, Advance Online Publication, (July 11, 2016), DOI: 10.1038/nphys3819

Weitere Informationen:

http://dx.doi.org/10.1038/nphys3819 Originalpublikation
http://qcmd.mpsd.mpg.de/ Forschungsgruppe von Prof. Dr. Andrea Cavalleri
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie