Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Basler Forscher schauen Katalysator bei der Arbeit zu

17.08.2016

Physikern der Universität Basel ist es erstmals gelungen, mithilfe eines Rasterkraftmikroskops einem Silberkatalysator bei der Arbeit zuzusehen. Aus den Beobachtungen während einer sogenannten Ullmann-Reaktion können die Forscher deren Energieumsatz berechnen und die Katalyse damit möglicherweise optimieren. Die Studie, die mit Fachkollegen aus Japan und dem Iran entstand, wurde in der Wissenschaftszeitschrift «Small» veröffentlicht.

Die untersuchte Ullmann-Reaktion ist eine chemische Reaktion, bei der Silberatome die Bindung von zwei Kohlenstoffatomen katalysieren, an denen vorher Iod gebunden war. Obwohl diese Art der Reaktion schon seit 1901 bekannt ist und für zahlreiche wichtige chemische Umwandlungen angewendet wird, konnte das Zwischenprodukt dieser Reaktion bisher nicht genau beobachtet werden.


Das Zwischenprodukt der Ullmann-Reaktion mit dem Silberkatalysator (silbern) zwischen den Kohlenstoffringen (schwarz) und Schwefelatomen (gelb) krümmt sich wie eine Brücke über der Silber-Oberfläche.

Universität Basel, Departement Physik

Dieses Zwischenprodukt haben nun Forscher um Prof. Ernst Meyer und Dr. Shigeki Kawai vom Swiss Nanoscience Institute und dem Departement Physik der Universität Basel mithilfe eines Rasterkraftmikroskops in atomarer Auflösung dargestellt.

Überraschenderweise zeigte sich, dass die Silberatome schon bei Temperaturen von etwa –120 °C mit den Molekülen reagieren und gekrümmt wie eine Brücke über einen Fluss erscheinen. Im zweiten Schritt der Reaktion, der eine Temperaturerhöhung auf etwa 105 °C benötigt und zum Endprodukt führt, werden die Silberatome wieder frei und zwei Kohlenstoffatomen binden aneinander.

Energieberechnung möglich

Die Ullmann-Reaktion wird schon seit Langem für chemische Synthesen genutzt. In jüngster Zeit hat sich das Interesse an dieser Kopplung von Kohlenstoffatomen weiter verstärkt, da damit organische Moleküle an Oberflächen gebunden und lösungsmittelfrei Polymere hergestellt werden. Eine genaue Beobachtung der Arbeit des eingesetzten Katalysators lässt die Wissenschaftler den Ablauf der Reaktion besser verstehen.

Bisherige Analysen konnten die räumliche Anordnung des metallorganischen Zwischenprodukts nicht zeigen. Erst die jetzt erhaltenen detailgenauen Aufnahmen ermöglichten dem Projektpartner Prof. Stefan Goedecker vom Departement Physik der Universität Basel, den Energieumsatz der untersuchten Ullmann-Reaktion zu berechnen. Diese Daten bestätigten die ungewöhnliche räumliche Anordnung des Zwischenprodukts und liefern Hinweise zur Optimierung der Reaktion.

Relativ geringe Temperaturen

Es liegt wahrscheinlich an der beobachteten Krümmung bzw. Flexibilität der Moleküle, dass die Reaktion relativ geringe Temperaturen von 105 °C benötigt. Die Moleküle stehen unter mechanischer Spannung und können somit leichter reagieren, also bei geringeren Temperaturen. Wenn es gelänge, auch mit andern Katalysatoren solche unter Spannung stehende Zwischenprodukte zu erreichen, könnten katalytische Reaktionen auch bei tieferen Temperaturen möglich werden. Dies wäre ökologisch und ökonomisch sinnvoll, da klassische Katalysatoren mit Platin, Rhodium oder Palladium oft hohe Betriebstemperaturen von 500 °C benötigen – was zur Emission von Abgasen im kalten Zustand führt.

Die Forschungsarbeiten wurden im Rahmen einer Kooperation zwischen dem Departement Physik der Universität Basel, dem National Institute of Materials Science (Japan), der Japan Science and Technology Agency (Japan), der University of Tokyo (Japan) und der Shadid Beheshti University (Iran) durchgeführt.

Originalarbeit

Shigeki Kawai, Ali Sadeghi, Toshihiro Okamoto, Chikahiko Mitsui, Rémy Pawlak, Tobias Meier, Jun Takeya, Stefan Goedecker and Ernst Meyer
Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy
Small (2016), DOI: 10.1002/smll.201601216

Weitere Auskünfte

Prof. Dr. Ernst Meyer, Universität Basel, Departement Physik, Tel. +41 61 267 37 24, E-Mail: ernst.meyer@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Basler-Forscher-schauen-Katal...

Olivia Poisson | Universität Basel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie