Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Autobahn für ultrakalte Atome in optischen Kristallen

09.07.2014

LMU/MPQ-Physikern ist es erstmals gelungen, ein Analogon zum Meißner-Effekt in Leiter-ähnlichen optischen Gittern zu realisieren und Oberflächenströme zu messen.

Wird ein Supraleiter einem äußeren Magnetfeld ausgesetzt, bilden sich Oberflächenströme, welche dem von außen angelegten Magnetfeld entgegenwirken und so das Feld aus dem Inneren des Supraleiters verdrängen. Dieses quantenmechanische Phänomen wurde erstmals 1933 beobachtet und ist nach seinen Entdeckern als „Meißner-Ochsenfeld Effekt“ benannt.


Schematische Darstellung des optischen Kristalls mit Leiter-ähnlicher Struktur. Die blauen und gelben Kugeln zeigen, wie sich die Atome in der Meißner-Phase in entgegen-gesetzte Richtungen bewegen. Im Experiment wurde diese Stromstärke gemessen, um den Übergang von der Meißner- in die Vortexphase zu charakterisieren. (Foto: MPQ, Abteilung Quanten-Vielteilchensysteme).

Dieser Effekt hat in vielen Bereichen Anwendung gefunden, von der Magnetschwebetechnik bis hin zur Medizin, um nur zwei Beispiele zu nennen. Einer Gruppe von Wissenschaftler um Professor Immanuel Bloch (Ludwig-Maximilians Universität und Max-Planck-Institut für Quantenoptik) ist es nun in Zusammenarbeit mit der theoretischen Physikerin Dr. Belén Paredes vom Institut für theoretische Physik (IFT) in Madrid erstmals gelungen, einen ähnlichen Effekt mit ultrakalten Atomen in optischen Gittern zu simulieren.

Das von ihnen realisierte System stellt das einfachst mögliche System dar, in dem ein solches Verhalten beobachtet werden kann, und bestätigt mehr als 20 Jahre alte theoretische Vorhersagen. Darüber hinaus konnten die Wissenschaftler den Phasenübergang von dieser Meißner-Phase zu einer sogenannten Vortexphase beobachten, in der die Oberflächenströme Wirbel bilden und das Feld daher nicht mehr vollständig aus dem Supraleiter „verdrängt“ werden kann. (Nature Physics, 2998 (2014)).

Supraleiter unterscheiden sich von herkömmlichen Leitern dahingehend, dass unterhalb einer bestimmten kritischen Temperatur ein Phasenübergang stattfindet und sie Strom verlustfrei leiten können. Hierfür sind extrem tiefe Temperaturen von typischerweise wenigen Kelvin nötig. Eine weitere erstaunliche Eigenschaft von Supraleitern ist der schon erwähnte Meißner-Ochsenfeld Effekt. Bringt man einen Supraleiter in ein externes Magnetfeld, verhindern Oberflächenströme ein Eindringen des Feldes ins Innere des Supraleiters.

Die Stärke der Oberflächenströme skaliert daher mit der Stärke des angelegten Feldes. Eine vollständige Abschirmung ist allerdings nur bis zu einer maximalen kritischen Magnetfeldstärke möglich. Abhängig von ihrem Verhalten bei noch größeren Feldstärken unterscheidet man verschiedene Klassen von Supraleitern. Für einige von ihnen, den Supraleitern 2. Art, bilden sich sogenannte Vortex- oder Wirbelstrukturen in den Oberflächenströmen, welche ein vollständiges Verdrängen des Magnetfeldes aus dem Inneren des Supraleiters verhindern.

Ein tieferes theoretisches Verständnis dieser Eigenschaften ist vor allem für die Materialwissenschaft von großer Bedeutung. Hierbei könnten kalte Atome in optischen Gittern helfen, da sie vergrößerte Modelle von Festkörperkristallen darstellen, welche experimentell sehr gut kontrollierbar sind. „Bisher war es jedoch nicht möglich, derartige Effekte mit kalten Atomen in optischen Gittern zu simulieren“, erklärt Marcos Atala, ein Wissenschaftler im Team um Professor Bloch.

In ihren Experimenten werden extrem kalte Rubidiumatome mithilfe von Laserstrahlen in einem Gitter angeordnet – einem sogenannten optischen Kristall. Die Atome befinden sich dabei abhängig von der Frequenz des verwendeten Lasers in den Intensitätsmaxima bzw. -minima von optischen Stehwellen. Die so erzeugte Gitterstruktur stellt ein ideales Modell eines Festkörperkristalls dar, in dem die Atome die Rolle der Elektronen spielen. Um das Verhalten der erwähnten Ströme messen zu können, haben die Wissenschaftler neue Messmethoden in Leiter-ähnlichen optischen Gittern entwickelt (Abb.1).

Elektronen in einem Festkörperkristall, der sich in einem externen Magnetfeld befindet, werden durch die sogenannte Lorentzkraft, die senkrecht zur Bewegungsrichtung wirkt, auf Kreisbahnen gezwungen. Atome in optischen Kristallen, wie sie in den Münchner Experimenten verwendet werden, sind dagegen elektrisch neutral und spüren daher keine Lorentzkraft. Um diese Limitierung zu umgehen, haben die Wissenschaftler eine Technik entwickelt, bei der sie den Effekt eines Magnetfeldes mit einer speziellen Laserstrahlenanordnung simulieren.

Dabei gibt ein zusätzliches Strahlenpaar den Atomen einen „Kick“, wenn sie sich von einer Seite der optischen Leiter auf die andere bewegen. Bewegen sie sich in die entgegengesetzte Richtung, erfahren sie auch einen umgekehrten Impuls. Auf diese Weise ist es ihnen gelungen, künstliche Magnetfelder zu erzeugen, die einer Stärke von mehreren tausend Tesla entsprechen – einem Wert, der mit herkömmlichen Methoden im Labor nicht erreichbar ist.

In den optischen Leitersystemen treten, ähnlich wie bei einem Supraleiter, eine Meißner- und eine Vortexphase auf, in denen auf analoge Weise Ströme induziert werden. Ein wichtiger Unterschied ist allerdings, dass in diesem Fall die Ströme aufgrund der Ladungsneutralität der Atome kein Magnetfeld erzeugen, das dem angelegten Feld entgegenwirkt. Um den Übergang zwischen den beiden Phasen experimentell beobachten zu können, haben die Münchner Wissenschaftler eine neue Messmethode entwickelt, mit der sie die Ströme auf den beiden Seiten der Leiter unabhängig voneinander messen können. Diese Ströme erreichen ihr Maximum in der Meißner-Phase und nehmen in der Vortexphase aufgrund der Wirbelströme ab.

Diese Messung stellt einen wichtigen Schritt auf dem Weg zur Simulation von Festkörpern mithilfe ultrakalter Atome in optischen Gittern dar. Sie eröffnet vielfältige Möglichkeiten um Phänomene wie den integralen oder den fraktalen Quanten-Hall Effekt zu studieren, auch in Bereichen, in denen die Wechselwirkung zwischen Teilchen eine wichtige Rolle spielt.

Darüber hinaus könnte das System mit einem Quantengas-Mikroskop kombiniert werden, das einzelne Atome im Gitter und somit die Wirbelstrukturen der Ströme sichtbar macht. „Diese neuen Messmethoden helfen uns, ein besseres Verständnis von Phasenübergängen und der Dynamik von Quantenmaterie unter dem Einfluss sehr starker Magnetfelder zu erhalten“, betont Prof. Immanuel Bloch.

Original Veröffentlichung

Marcos Atala, Monika Aidelsburger, Michael Lohse, Julio T. Barreiro, Belén Paredes and Immanuel Bloch
Observation of chiral currents with ultracold atoms in bosonic ladders
Nature Physics, 2998 (2014), Advance Online Publication

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Belén Paredes
Instituto de Física Teórica UAM/CSIC
C/Nicolás Cabrera 13-15
Cantoblanco
28049 Madrid, Spain
Telefon: +34 91 299 9862
E-Mail: belen.paredes@csic.es

Dipl. Phys. Marcos Atala
LMU München
Telefon: +49 89 2180 6133
E-Mail: marcos.atala@physik.uni-muenchen.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten