Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Autobahn für Elektronen

24.01.2012
Ein Schritt zur Spintronik: An der Oberfläche von topologischen Isolatoren mit Germanium, Zinn oder Blei fließt Strom sehr geordnet

Wenn Strom durch gewöhnliche Metalle fließt, herrscht normalerweise ein ziemliches Elektronen-Chaos. Vor wenigen Jahren haben Forscher entdeckt, dass es Materialien gibt, in denen sich die Elektronen mit einer erstaunlichen Ordnung bewegen.


Bilder topologischer Oberflächenzustände: In Photoemissionsspektren ist zu erkennen, wie sich die Zustände mit der Bindungsenergie der Elektronen verändern. Die weißen Linien in den eingeklinkten Bilder geben die theoretisch berechneten Kurven wieder. © Paul-Scherrer-Institut/MPI für Mikrostrukturphysik

Diese ungewöhnlichen Eigenschaften zeigen sie jedoch nur in einer hauchdünnen Schicht an der Oberfläche, ansonsten sind diese toplogische Isolatoren genannte Stoffe elektrisch nicht leitend. Nun hat ein internationales Team von Wissenschaftlern unter Beteiligung von Physikern des Max-Planck-Instituts für Mikrostrukturphysik in Halle eine Methode entwickelt, wie sich topologische Isolatoren mit ganz bestimmten Merkmalen herstellen lassen. Mit solchen Materialien könnten dazu dienen, künftig leistungsfähigere Computer zu konstruieren.

Entweder fließt in einem Material Strom – oder nicht. Ein Stoff, dessen Inneres nicht leitfähig ist, an dessen Oberfläche aber Elektronen fließen, ist daher etwas sehr Ungewöhnliches. Die Kombination eines Holzstücks, das mit einer Schicht Silber überzogen ist, würde genau diesen Effekt zeigen. Vor wenigen Jahren haben Physiker entdeckt, dass es diese ungewöhnliche Kombination zweier Eigenschaften tatsächlich in einem Material gibt. Wobei die Ursache für die ungewöhnliche Leitfähigkeit an der Oberfläche im nicht leitfähigen Inneren zu finden ist. Stoffe dieser Art nennen Physiker „topologische Isolatoren“. Was die Wissenschaftler daran besonders interessiert, sind die erstaunlichen Eigenschaften der Elektronen in der hauchdünnen Randschicht.

Erstmals stellten Physiker solche Randströme an sehr aufwändig zu produzierenden Graphitschichten fest. Inzwischen ist bekannt, dass auch einfacher herstellbare Metallverbindungen mit Wismut oder Antimon dieses ungewöhnliche Phänomen zeigen. Einem internationalen Team von Physikern des Max-Planck-Instituts für Mikrostrukturphysik in Halle, des Physikzentrums in San Sebastian sowie der Universitäten in Tomsk, Zürich, Baku und Hamburg ist es nun erstmals gelungen, topologische Isolatoren mit ganz gezielten Merkmalen herzustellen.

Eine Spinordnung reguliert den Elektronenfluss

Normalerweise herrscht in einem elektrischen Strom ein gewisses Chaos. Wie die Elektroautos eines Autoscooters auf einem Volksfest aneinander und gegen die Bande rempeln, stoßen auch die Strom transportierenden Elektronen zusammen und gegen Atome. Sie verlieren dabei Energie und ändern ihre Richtung. In der dünnen stromführenden Randschicht eines topologischen Isolators bewegen sich die Elektronen dagegen im Idealfall wie Fahrzeuge auf einer Autobahn, auf der die Geschwindigkeit begrenzt und ein Mindestabstand vorgegeben ist. Die Elektronen fließen gleichmäßig dahin – ohne Zusammenstöße und Energieverluste. Dies ist möglich, weil den Randelektronen eine ganz bestimmte Ordnung aufgezwungen wird, genauer gesagt eine Spinordnung.

Man kann sich vorstellen, dass sich Elektronen wie kleine Kreisel ständig um sich selbst drehen, entweder im oder gegen den Uhrzeigersinn. Dadurch entsteht ein winziger Magnet, dessen magnetischer Nordpol entweder nach oben oder nach unten zeigt. Physiker sprechen vom Spin des Elektrons, der entweder nach „oben“ oder nach „unten“ gerichtet sein kann. In einem gewöhnlichen elektrischen Strom spielt der Spin keine Rolle, weil die Achsen der Elektronen-Kreisel in alle möglichen Richtungen zeigen und sich die beiden Drehrichtungen völlig zufällig verteilen.

Im idealen Randstrom eines topologischen Isolators dagegen nicht: Die Spins der Elektronen sind dort alle gleich ausgerichtet; ihre Achsen stehen senkrecht auf der Bewegungsrichtung, und die Drehrichtung, also der Spin, ist mit der Bewegungsrichtung gekoppelt. Das bedeutet, dass Elektronen mit Spin nach „oben“ nur in die eine Richtung fließen, Elektronen mit Spin nach „unten“ nur in die entgegengesetzte. Bei den Antimon- und Wismut-Verbindungen (Bi2Te3, Bi2Se3, Sb2Te3), auf die sich die Forscher derzeit vor allem konzentrieren, kommt es jedoch vor, dass diese ideale Ordnung gestört ist.

Der Spin als Mittel der Datenverarbeitung

Die Physiker Arthur Ernst und Jürgen Henk vom Max-Planck-Institut für Mikrostrukurphysik sowie Kollegen des Physikzentrums in San Sebastian und der Universität Tomsk haben nun in aufwändigen numerischen Rechnungen detailliert vorhergesagt, dass sich diese ideale Ordnung einstellt, wenn man den zweielementigen Verbindungen ein drittes Element zufügt, und zwar aus der VI. Gruppe des Periodensystems (Germanium, Zinn, Blei). Die anderen beteiligten Forscher haben die theoretischen Ergebnisse experimentell bestätigt. Zukünftig können mit dieser Methode topologische Isolatoren mit den gewünschten Merkmalen hergestellt werden.

Für Anwendungen sind die erstaunlichen Eigenschaften dieser Randelektronen äußerst interessant: Die Spintronik, ein aufstrebendes Forschungsgebiet der Physik, hat zum Ziel, neben der elektrischen Ladung eines Tages auch den Spin der Elektronen für die elektronische Informationsverarbeitung zu nutzen. Das macht topologische Isolatoren zu potentiellen Materialien der Computer von morgen. Auf jeden Fall ist es der Grund dafür, dass sie heute eines der „heißesten“ Forschungsgebiete der Physik sind.

Ansprechpartner

Dr. Ernst Arthur
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 5582-666
Fax: +49 345 5511-223
E-Mail: aernst@mpi-halle.de
PD Dr. Jürgen Henk
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 558-2970
E-Mail: henk@mpi-halle.mpg.de
Originalveröffentlichung
Sergey V. Eremeev, Gabriel Landolt, Tatiana V. Menshchikova, Bartosz Slomski, Yury M. Koroteev, Ziya S. Aliev, Mahammad B. Babanly, Jürgen Henk, Arthur Ernst, Luc Patthey, Andreas Eich, Alexander Ako Khajetoorians, Julian Hagemeister, Oswald Pietzsch, Jens Wiebe, Roland Wiesendanger, Pedro M. Echenique, Stepan S. Tsirkin, Imamaddin R. Amiraslanov, J. Hugo Dil, & Evgueni V. Chulkov
Atom-specific spin mapping and buried topological states in a homological series of topological insulators

Nature communications, 24. Januar 2012; DOI: 10.1038/ncomms1638

Dr. Ernst Arthur | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4996060/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

22.08.2017 | Physik Astronomie

Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer

22.08.2017 | Biowissenschaften Chemie

Virus mit Eierschale

22.08.2017 | Biowissenschaften Chemie