Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Autobahn für Elektronen

24.01.2012
Ein Schritt zur Spintronik: An der Oberfläche von topologischen Isolatoren mit Germanium, Zinn oder Blei fließt Strom sehr geordnet

Wenn Strom durch gewöhnliche Metalle fließt, herrscht normalerweise ein ziemliches Elektronen-Chaos. Vor wenigen Jahren haben Forscher entdeckt, dass es Materialien gibt, in denen sich die Elektronen mit einer erstaunlichen Ordnung bewegen.


Bilder topologischer Oberflächenzustände: In Photoemissionsspektren ist zu erkennen, wie sich die Zustände mit der Bindungsenergie der Elektronen verändern. Die weißen Linien in den eingeklinkten Bilder geben die theoretisch berechneten Kurven wieder. © Paul-Scherrer-Institut/MPI für Mikrostrukturphysik

Diese ungewöhnlichen Eigenschaften zeigen sie jedoch nur in einer hauchdünnen Schicht an der Oberfläche, ansonsten sind diese toplogische Isolatoren genannte Stoffe elektrisch nicht leitend. Nun hat ein internationales Team von Wissenschaftlern unter Beteiligung von Physikern des Max-Planck-Instituts für Mikrostrukturphysik in Halle eine Methode entwickelt, wie sich topologische Isolatoren mit ganz bestimmten Merkmalen herstellen lassen. Mit solchen Materialien könnten dazu dienen, künftig leistungsfähigere Computer zu konstruieren.

Entweder fließt in einem Material Strom – oder nicht. Ein Stoff, dessen Inneres nicht leitfähig ist, an dessen Oberfläche aber Elektronen fließen, ist daher etwas sehr Ungewöhnliches. Die Kombination eines Holzstücks, das mit einer Schicht Silber überzogen ist, würde genau diesen Effekt zeigen. Vor wenigen Jahren haben Physiker entdeckt, dass es diese ungewöhnliche Kombination zweier Eigenschaften tatsächlich in einem Material gibt. Wobei die Ursache für die ungewöhnliche Leitfähigkeit an der Oberfläche im nicht leitfähigen Inneren zu finden ist. Stoffe dieser Art nennen Physiker „topologische Isolatoren“. Was die Wissenschaftler daran besonders interessiert, sind die erstaunlichen Eigenschaften der Elektronen in der hauchdünnen Randschicht.

Erstmals stellten Physiker solche Randströme an sehr aufwändig zu produzierenden Graphitschichten fest. Inzwischen ist bekannt, dass auch einfacher herstellbare Metallverbindungen mit Wismut oder Antimon dieses ungewöhnliche Phänomen zeigen. Einem internationalen Team von Physikern des Max-Planck-Instituts für Mikrostrukturphysik in Halle, des Physikzentrums in San Sebastian sowie der Universitäten in Tomsk, Zürich, Baku und Hamburg ist es nun erstmals gelungen, topologische Isolatoren mit ganz gezielten Merkmalen herzustellen.

Eine Spinordnung reguliert den Elektronenfluss

Normalerweise herrscht in einem elektrischen Strom ein gewisses Chaos. Wie die Elektroautos eines Autoscooters auf einem Volksfest aneinander und gegen die Bande rempeln, stoßen auch die Strom transportierenden Elektronen zusammen und gegen Atome. Sie verlieren dabei Energie und ändern ihre Richtung. In der dünnen stromführenden Randschicht eines topologischen Isolators bewegen sich die Elektronen dagegen im Idealfall wie Fahrzeuge auf einer Autobahn, auf der die Geschwindigkeit begrenzt und ein Mindestabstand vorgegeben ist. Die Elektronen fließen gleichmäßig dahin – ohne Zusammenstöße und Energieverluste. Dies ist möglich, weil den Randelektronen eine ganz bestimmte Ordnung aufgezwungen wird, genauer gesagt eine Spinordnung.

Man kann sich vorstellen, dass sich Elektronen wie kleine Kreisel ständig um sich selbst drehen, entweder im oder gegen den Uhrzeigersinn. Dadurch entsteht ein winziger Magnet, dessen magnetischer Nordpol entweder nach oben oder nach unten zeigt. Physiker sprechen vom Spin des Elektrons, der entweder nach „oben“ oder nach „unten“ gerichtet sein kann. In einem gewöhnlichen elektrischen Strom spielt der Spin keine Rolle, weil die Achsen der Elektronen-Kreisel in alle möglichen Richtungen zeigen und sich die beiden Drehrichtungen völlig zufällig verteilen.

Im idealen Randstrom eines topologischen Isolators dagegen nicht: Die Spins der Elektronen sind dort alle gleich ausgerichtet; ihre Achsen stehen senkrecht auf der Bewegungsrichtung, und die Drehrichtung, also der Spin, ist mit der Bewegungsrichtung gekoppelt. Das bedeutet, dass Elektronen mit Spin nach „oben“ nur in die eine Richtung fließen, Elektronen mit Spin nach „unten“ nur in die entgegengesetzte. Bei den Antimon- und Wismut-Verbindungen (Bi2Te3, Bi2Se3, Sb2Te3), auf die sich die Forscher derzeit vor allem konzentrieren, kommt es jedoch vor, dass diese ideale Ordnung gestört ist.

Der Spin als Mittel der Datenverarbeitung

Die Physiker Arthur Ernst und Jürgen Henk vom Max-Planck-Institut für Mikrostrukurphysik sowie Kollegen des Physikzentrums in San Sebastian und der Universität Tomsk haben nun in aufwändigen numerischen Rechnungen detailliert vorhergesagt, dass sich diese ideale Ordnung einstellt, wenn man den zweielementigen Verbindungen ein drittes Element zufügt, und zwar aus der VI. Gruppe des Periodensystems (Germanium, Zinn, Blei). Die anderen beteiligten Forscher haben die theoretischen Ergebnisse experimentell bestätigt. Zukünftig können mit dieser Methode topologische Isolatoren mit den gewünschten Merkmalen hergestellt werden.

Für Anwendungen sind die erstaunlichen Eigenschaften dieser Randelektronen äußerst interessant: Die Spintronik, ein aufstrebendes Forschungsgebiet der Physik, hat zum Ziel, neben der elektrischen Ladung eines Tages auch den Spin der Elektronen für die elektronische Informationsverarbeitung zu nutzen. Das macht topologische Isolatoren zu potentiellen Materialien der Computer von morgen. Auf jeden Fall ist es der Grund dafür, dass sie heute eines der „heißesten“ Forschungsgebiete der Physik sind.

Ansprechpartner

Dr. Ernst Arthur
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 5582-666
Fax: +49 345 5511-223
E-Mail: aernst@mpi-halle.de
PD Dr. Jürgen Henk
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 558-2970
E-Mail: henk@mpi-halle.mpg.de
Originalveröffentlichung
Sergey V. Eremeev, Gabriel Landolt, Tatiana V. Menshchikova, Bartosz Slomski, Yury M. Koroteev, Ziya S. Aliev, Mahammad B. Babanly, Jürgen Henk, Arthur Ernst, Luc Patthey, Andreas Eich, Alexander Ako Khajetoorians, Julian Hagemeister, Oswald Pietzsch, Jens Wiebe, Roland Wiesendanger, Pedro M. Echenique, Stepan S. Tsirkin, Imamaddin R. Amiraslanov, J. Hugo Dil, & Evgueni V. Chulkov
Atom-specific spin mapping and buried topological states in a homological series of topological insulators

Nature communications, 24. Januar 2012; DOI: 10.1038/ncomms1638

Dr. Ernst Arthur | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4996060/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive