Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Außergewöhnliche magnetische Struktur und Spindynamik im magnetoelektrischen Material LiFePO4 entdeckt

06.08.2015

Außergewöhnliche magnetische Struktur und Spindynamik im magnetoelektrischen Material LiFePO4 entdeckt

Ein HZB-Team hat die komplexe magnetische Struktur und die darauf basierende Spindynamik in der magnetoelektrischen Substanz LiFePO4 entschlüsselt. Materialien dieser Klasse werden bereits heute in der Sensorik eingesetzt und haben großes Anwendungspotential in der Datenspeicherung sowie der Spintronik.


HZB-Forscher entschlüsselten an der Neutronenquelle BER II die magnetische Struktur des Materials LiFePO4.

HZB

Mit Experimenten, die an der Neutronenquelle BER II des HZB durchgeführt wurden, identifizierten die Forscher in LiFePO4 einen neuen Zweig im magnetischen Anregungsspektrum und wiesen eine nicht-kollineare magnetische Struktur nach.

Sie zeigten, dass die magnetoelektrischen Eigenschaften aufgrund der sogenannten Dzyaloshinsky-Moriya-Wechselwirkung zustande kommen, die durch die Spin-Bahn-Kopplung magnetischer Momente verursacht wird. Die Ergebnisse sind in der Zeitschrift Physical Review B erschienen (http://dx.doi.org/10.1103/PhysRevB.92.024404).

LiFePO4 ist ein Modellsystem für die Klasse magnetoelektrischer Materialien. Diese Materialien werden heute bereits in der Sensorik eingesetzt und haben großes Anwendungspotential in der Datenspeicherung und der Spintronik.

In magnetoelektrischen Materialien sind Magnetisierung und elektrische Polarisation so miteinander gekoppelt, dass externe magnetische Felder eine elektrische Polarisation induzieren und umgekehrt äußere elektrische Felder zu einer endlichen Magnetisierung führen. Die Kopplung zwischen Magnetisierung und elektrischer Polarisation tritt dann auf, wenn sich kleinste Veränderungen in der Gitterstruktur, an die die elektronische Struktur gekoppelt ist, aufgrund der magnetischen Wechselwirkung auch in der magnetischen Struktur widerspiegeln.

Verkippte magnetische Struktur

Dem HZB-Team um Dr. Rasmus Toft-Petersen ist es nun gelungen, eine winzige Verkippung der magnetischen Momente nachzuweisen, die zur Magnetoelektrizität in dieser Verbindung führt. Die magnetischen Anregungen in der antiferromagnetischen Phase von LiFePO4 wurden am Dreiachsenspektrometer für kalte Neutronen V2/FLEXX an der Neutronenquelle BER II vermessen.

Durch den Nachweis von zwei Zweigen im Anregungsspektrum gelang es, die komplexen magnetischen Wechselwirkungsparameter genau zu bestimmen und die in diesem System vorhandene starke magnetische Anisotropie zu identifizieren. Das Auftreten von ausgeprägter magnetischer Anisotropie ist typischerweise eine Folge starker Spin-Bahn-Kopplung und trägt erheblich zur Bildung des Grundzustands bei.

Dass die Spin-Bahn-Kopplung eine wesentliche Rolle spielt, konnte durch weitere Experimente am Diffraktometer E5 nachgewiesen werden. In den Messungen gaben schwache magnetische Bragg-Peaks den Hinweis auf eine magnetische Struktur, in der die magnetischen Momente nicht völlig parallel zueinander orientiert sind, sondern geringfügig gegeneinander verkippt sind.

Solche Verkippungen können durch die von der Spin-Bahn-Kopplung verursachte Dzyaloshinsky-Moriya-Wechselwirkung entstehen, da sie eine senkrechte Orientierung der Spins gegenüber einer parallelen Ausrichtung bevorzugt.

Modellierung der magnetoelektrischen Eigenschaften

Die Dzyaloshinsky-Moriya-Wechselwirkung ist sehr empfindlich auf die Symmetrie der Kristallstruktur. Legt man an eine Anordnung magnetischer Momente mit verkippter Struktur ein äußeres magnetisches Feld an, ändern sich die Kippwinkel und die mit der Dzyaloshinsky-Moriya-Wechselwirkung verbundene Energie. Das HZB-Team konnte nun zeigen, dass LiFePO4 auf extern angelegte magnetische Felder mit der Verschiebung der Sauerstoffatome reagiert.

Dies führt zur Dzyaloshinsky-Moriya-Wechselwirkung, deren Auftreten ohne Magnetfeld aus Symmetriegründen eigentlich verboten ist. Auf Grundlage dieses Modells wurde die Temperaturabhängigkeit der magnetoelektrischen Koeffizienten berechnet, die die lineare Proportionalität zwischen magnetischem Feld und der elektrischen Polarisation beschreiben. „Die berechneten Koeffizienten sind in guter Übereinstimmung mit experimentellen Daten, die wir in der Literatur aus früheren Messungen gefunden haben, und bestätigen damit das Modell“, sagt HZB-Forscher Dr. Rasmus Toft-Petersen.

Zur Publikation: Phys. Rev. B 92, 024404. “Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4” R. Toft-Petersen, M. Reehuis, T. B. S. Jensen, N. H. Andersen, J. Li, M. Duc Le, M. Laver, C. Niedermayer, B. Klemke, K. Lefmann, and D. Vaknin

Kontakt:
Dr. Rasmus Toft-Petersen
(030) 8062-42171
rasmus.toft-petersen@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14272&sprache=de&ty...
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.024404

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen