Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufruhr auf der Nanoskala – Topologische Isolatoren leisten Widerstand

10.05.2016

Die kleine Kante ist nur rund fünf Atomschichten dick, doch sie reicht aus, um eine feste Theorie ins Wanken zu bringen: An Topologischen Isolatoren, den Hoffnungsträgern z.B. für Quantencomputer, forschen Projektleiter Dr. Christian Bobisch und Sebastian Bauer vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE), gefördert von der Deutschen Forschungsgemeinschaft. Sie wiesen nach, dass Kanten auf der Oberfläche die elektrische Leitfähigkeit beeinflussen, indem sie wie kleine Widerstände wirken – was aber gleichzeitig die Tür zu einem präzisen elektronischen Oberflächendesign öffnet. Ihre Erkenntnisse erschienen soeben in der Fachzeitschrift „Nature Communications“.

Einige Bauteile elektronischer Schaltungen sind heute nur noch 14 Nanometer groß. Doch hier kommt der Trend zu immer kleineren Komponenten an seine Grenze:


Die Abbildung zeigt, wie sich die Spannung an der Oberfläche der Probe verändert: Die Stufenkanten wirken wie kleine Widerstände und führen so zu Spannungssprüngen. Bildnachweis: nature publishing group

In diesen winzigen Dimensionen tauchen zunehmend Quanteneffekte auf, die die klassische, siliziumbasierte Technik unmöglich machen. Für zusätzliche Probleme sorgt die Wärme in den dicht gepackten Schaltungen.

Forscher setzen daher ihre Hoffnungen auf eine neue Materialklasse, die erst vor wenigen Jahren entdeckt wurde: die Topologischen Isolatoren. Während diese im Innern isolierend sind, leiten sie gleichzeitig auf ihrer Oberfläche elektrischen Strom. Die bisher anerkannte Theorie besagte, dass diese Leitfähigkeit nicht durch Oberflächendefekte beeinträchtigt wird.

Die Physiker Sebastian Bauer und Dr. Christian Bobisch wiesen nun nach, dass dies sehr wohl der Fall ist: Sie gehören zu den wenigen Wissenschaftlern, die die Rastertunnelpotentiometrie beherrschen – eine Methode, die mit atomarer Genauigkeit gleichzeitig misst, wie eine Oberfläche beschaffen ist und wo Strom entlangfließt.

In ihrer Probe aus Bismuthselenid (Bi2Se3) konnten sie zeigen, dass jede nanometerhohe Kante einer rauen Oberfläche wie ein winziger Widerstand wirkt. Insgesamt reduzieren sie die Leitfähigkeit der ganzen Schicht.

Bobisch interpretiert seine Ergebnisse keineswegs als Rückschlag, sondern als zusätzlichen Vorteil: „Wir können nun das Potenzial der Topologischen Isolatoren in künftigen Bauelementen realistischer einschätzen. Und es ergeben sich ganz neue Möglichkeiten. Es ist denkbar, mit diesem Wissen die Oberfläche bewusst zu designen – wo soll viel Strom fließen, wo weniger?“ So würden sich Streuverluste verringern und damit automatisch auch die Erwärmung.

Originalpublikation:
Bauer, S. and Bobisch, C. A. Nanoscale electron transport at the surface of a topological insulator. Nat. Commun. 7:11381 doi: 10.1038/ncomms11381 (2016).


Weitere Informationen:
Dr. Christian Bobisch, Fakultät für Physik, Tel. 0203/379-2558, christian.bobisch@uni-due.de

Redaktion: Birte Vierjahn, Tel. 0203/379-8176, birte.vierjahn@uni-due.de

Katrin Koster | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie