Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf ultraschneller Wanderschaft im Graphen

05.10.2015

Forscher des Labors für Attosekundenphysik des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians Universität haben in Zusammenarbeit mit dem Center for Nano-Optics der Georgia State University in Atlanta (USA) simuliert, was passiert, wenn eine Schicht aus Kohlenstoff-Atomen mit starkem Licht bestrahlt wird.

Trifft Licht auf Elektronen, bewegen diese sich rasend schnell, innerhalb weniger Milliardstel von milliardstel Sekunden (Attosekunden). Was mit Elektronen in Graphenatomen passiert, wenn starke Laserpulse auf sie treffen, haben Forscher des Labors für Attosekundenphysik des Max-Planck-Instituts für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität (LMU) in Zusammenarbeit mit dem Center for Nano-Optics der Georgia State University in Atlanta (USA) simuliert. Ziel solcher Simulationen ist das Verständnis der Licht-Teilchen-Wechselwirkung im Mikrokosmos.


Ein Laserpuls trifft auf eine zweidimensionale Schicht aus Graphen. Dabei verschiebt das Licht die Elektronen der Kohlenstoffatome.

Grafik: Christian Hackenberger

Zukünftig könnte so eine lichtwellengesteuerte Elektronik möglich werden, die rund 100.000 Mal schneller wäre als heutigen Technologien. Sie würde mit der Frequenz von Lichtwellen arbeiten, die rund eine Million Milliarden Mal pro Sekunde schwingen (Petahertz). Graphen mit seinen außergewöhnlichen Eigenschaften eignet sich dabei als Material für erste Versuche besonders gut.

Je genauer wir die Bewegung von Elektronen beobachten können, desto besser verstehen wir deren Wechselwirkung mit Licht. Bis heute hält die Natur viele Phänomene der Licht-Materie-Interaktion in Festkörpern unter Verschluss.

Der Zugang zu diesem inneratomaren Kosmos ist schwierig, da die Vorgänge in wenigen Femtosekunden, ja sogar Attosekunden ablaufen: eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde, eine Attosekunde ist noch tausend Mal kürzer. Die dafür notwendigen experimentellen Messmethoden befinden sich in der Entwicklungsphase, allerdings lassen sich die physikalischen Prozesse mit Hilfe von Simulationen untersuchen.

Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität haben nun in Zusammenarbeit mit dem Center for Nano-Optics der Georgia State University in Atlanta (USA) berechnet, was mit den Elektronen in einem Graphen-Kristall passiert, wenn sie von einem starken Lichtpuls getroffen werden.

Das Laserfeld regt die Elektronen an und verschiebt sie, wodurch sich die Ladungsdichteverteilung ändert. Währenddessen wird ein extrem kurzer Elektronenpuls an der Probe gestreut. Aus der Ablenkung dieser Materiewellen, der so genannten Diffraktometrie, können die Forscher schließen, welche Veränderungen in der Ladungsdichte durch den Laserblitz ausgelöst wurden.

Die Simulation eines solchen Ereignisses hat nun komplexe Zusammenhänge aufgezeigt zwischen der Anregung von Elektronen durch Licht und ihrer darauf folgenden ultraschnellen Wanderschaft in und zwischen den Kohlenstoffatomen in der Graphenschicht. Benachbarte Atome teilen sich die nur schwach gebundenen Valenzelektronen.

Ihr Verhalten untersuchen die Wissenschaftler, indem sie die elektrische Ladung innerhalb von mikroskopisch kleinen Volumeneinheiten, die unterschiedliche chemische Bindungen repräsentieren, analysieren. Während der Bestrahlung mit dem Laserpuls findet eine signifikante Umverteilung der Ladung statt; gleichzeitig ist die Verschiebung aufgrund des elektromagnetischen Feldes des Laserpulses sehr klein, sie beträgt weniger als ein Pikometer (10 hoch minus 12 Meter). Die Rechnungen zeigten außerdem, dass der lichtinduzierte elektrische Strom nicht gleichmäßig durch die Schicht fließt, sondern nur entlang der chemischen Bindungen zwischen den Kohlenstoffatomen.

Die Simulationen sollen dazu beitragen, Experimente für Ultrakurzzeit-Elektronendiffraktometrie zielgerichtet aufzubauen. „Möglicherweise werden viele weitere Phänomene entdeckt“, sagt Vladislav Yakovlev, der wissenschaftliche Leiter der Simulationen. „Möglicherweise werden Abweichungen von unseren Vorhersagen beobachtet. Aber auf jeden Fall sind wir uns ziemlich sicher, dass es noch einiges an neuer grundlegender Physik zu messen gibt, und dass ein Blick in die Licht-Materie Wechselwirkung mit atomarer Auflösung zwar anspruchsvoll, aber möglich ist“, ergänzt er. [Thorsten Naeser/Olivia Meyer-Streng]

Originalveröffentlichung:

Vladislav S. Yakovlev, Mark I. Stockman, Ferenc Krausz & Peter Baum
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Scientific Reports, 28. September 2015, doi: 10.1038/srep14581

Kontakt:

Dr. Peter Baum
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Telefon: +49 (0)89 / 289 - 14102
E-Mail: peter.baum@lmu.de

Dr. Vladislav Yakovlev
Center for Nano-Optics
Georgia State University
Atlanta, GA 30303, USA
Telefon: +1-404-413-6099
E-Mail: vyakovlev@gsu.edu

Prof. Dr. Ferenc Krausz
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität München
Labor für Attosekundenphysik
Direktor am Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 - 600
Telefax: +49 (0)89 32 905 - 649
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten