Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf ultraschneller Wanderschaft im Graphen

05.10.2015

Forscher des Labors für Attosekundenphysik des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians Universität haben in Zusammenarbeit mit dem Center for Nano-Optics der Georgia State University in Atlanta (USA) simuliert, was passiert, wenn eine Schicht aus Kohlenstoff-Atomen mit starkem Licht bestrahlt wird.

Trifft Licht auf Elektronen, bewegen diese sich rasend schnell, innerhalb weniger Milliardstel von milliardstel Sekunden (Attosekunden). Was mit Elektronen in Graphenatomen passiert, wenn starke Laserpulse auf sie treffen, haben Forscher des Labors für Attosekundenphysik des Max-Planck-Instituts für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität (LMU) in Zusammenarbeit mit dem Center for Nano-Optics der Georgia State University in Atlanta (USA) simuliert. Ziel solcher Simulationen ist das Verständnis der Licht-Teilchen-Wechselwirkung im Mikrokosmos.


Ein Laserpuls trifft auf eine zweidimensionale Schicht aus Graphen. Dabei verschiebt das Licht die Elektronen der Kohlenstoffatome.

Grafik: Christian Hackenberger

Zukünftig könnte so eine lichtwellengesteuerte Elektronik möglich werden, die rund 100.000 Mal schneller wäre als heutigen Technologien. Sie würde mit der Frequenz von Lichtwellen arbeiten, die rund eine Million Milliarden Mal pro Sekunde schwingen (Petahertz). Graphen mit seinen außergewöhnlichen Eigenschaften eignet sich dabei als Material für erste Versuche besonders gut.

Je genauer wir die Bewegung von Elektronen beobachten können, desto besser verstehen wir deren Wechselwirkung mit Licht. Bis heute hält die Natur viele Phänomene der Licht-Materie-Interaktion in Festkörpern unter Verschluss.

Der Zugang zu diesem inneratomaren Kosmos ist schwierig, da die Vorgänge in wenigen Femtosekunden, ja sogar Attosekunden ablaufen: eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde, eine Attosekunde ist noch tausend Mal kürzer. Die dafür notwendigen experimentellen Messmethoden befinden sich in der Entwicklungsphase, allerdings lassen sich die physikalischen Prozesse mit Hilfe von Simulationen untersuchen.

Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität haben nun in Zusammenarbeit mit dem Center for Nano-Optics der Georgia State University in Atlanta (USA) berechnet, was mit den Elektronen in einem Graphen-Kristall passiert, wenn sie von einem starken Lichtpuls getroffen werden.

Das Laserfeld regt die Elektronen an und verschiebt sie, wodurch sich die Ladungsdichteverteilung ändert. Währenddessen wird ein extrem kurzer Elektronenpuls an der Probe gestreut. Aus der Ablenkung dieser Materiewellen, der so genannten Diffraktometrie, können die Forscher schließen, welche Veränderungen in der Ladungsdichte durch den Laserblitz ausgelöst wurden.

Die Simulation eines solchen Ereignisses hat nun komplexe Zusammenhänge aufgezeigt zwischen der Anregung von Elektronen durch Licht und ihrer darauf folgenden ultraschnellen Wanderschaft in und zwischen den Kohlenstoffatomen in der Graphenschicht. Benachbarte Atome teilen sich die nur schwach gebundenen Valenzelektronen.

Ihr Verhalten untersuchen die Wissenschaftler, indem sie die elektrische Ladung innerhalb von mikroskopisch kleinen Volumeneinheiten, die unterschiedliche chemische Bindungen repräsentieren, analysieren. Während der Bestrahlung mit dem Laserpuls findet eine signifikante Umverteilung der Ladung statt; gleichzeitig ist die Verschiebung aufgrund des elektromagnetischen Feldes des Laserpulses sehr klein, sie beträgt weniger als ein Pikometer (10 hoch minus 12 Meter). Die Rechnungen zeigten außerdem, dass der lichtinduzierte elektrische Strom nicht gleichmäßig durch die Schicht fließt, sondern nur entlang der chemischen Bindungen zwischen den Kohlenstoffatomen.

Die Simulationen sollen dazu beitragen, Experimente für Ultrakurzzeit-Elektronendiffraktometrie zielgerichtet aufzubauen. „Möglicherweise werden viele weitere Phänomene entdeckt“, sagt Vladislav Yakovlev, der wissenschaftliche Leiter der Simulationen. „Möglicherweise werden Abweichungen von unseren Vorhersagen beobachtet. Aber auf jeden Fall sind wir uns ziemlich sicher, dass es noch einiges an neuer grundlegender Physik zu messen gibt, und dass ein Blick in die Licht-Materie Wechselwirkung mit atomarer Auflösung zwar anspruchsvoll, aber möglich ist“, ergänzt er. [Thorsten Naeser/Olivia Meyer-Streng]

Originalveröffentlichung:

Vladislav S. Yakovlev, Mark I. Stockman, Ferenc Krausz & Peter Baum
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Scientific Reports, 28. September 2015, doi: 10.1038/srep14581

Kontakt:

Dr. Peter Baum
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Telefon: +49 (0)89 / 289 - 14102
E-Mail: peter.baum@lmu.de

Dr. Vladislav Yakovlev
Center for Nano-Optics
Georgia State University
Atlanta, GA 30303, USA
Telefon: +1-404-413-6099
E-Mail: vyakovlev@gsu.edu

Prof. Dr. Ferenc Krausz
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität München
Labor für Attosekundenphysik
Direktor am Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 - 600
Telefax: +49 (0)89 32 905 - 649
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics