Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Spitze getrieben – künstliche Atome für den Quantencomputer

30.06.2014

Ein internationales Forscherteam unter Leitung des Paul-Drude-Instituts für Festkörperelektronik (PDI) hat identische Quantenpunkte aus einzelnen Atomen aufgebaut. Die perfekte Reproduzierbarkeit dieser mikroskopisch kleinen Objekte ist ein wichtiger Meilenstein für neue Technologien wie den Quantencomputer und die Nano-Optik. Die Ergebnisse des Forscherteams sind in der Juli-Ausgabe der Zeitschrift Nature Nanotechnology veröffentlicht.

Quantenpunkte werden oft als „künstliche Atome“ bezeichnet, da sie – genauso wie reale Atome – Elektronen in quantisierte Zustände mit diskreten Energien zwingen. Diese Analogie trifft allerdings nur bedingt zu: Während reale Atome identisch sind, bestehen herkömmliche Quantenpunkte aus Hunderten bis zu Tausenden von Atomen, was zu unvermeidlichen Schwankungen in ihrer Größe und Form und damit ihren physikalischen Eigenschaften führt.


Quantenpunkt aus 22 Atomen in sechs verschiedenen Quantenzuständen. | Abb. PDI


Drei Quantenpunkte koppeln in definierter Weise miteinander. Damit zeigen sie ein Verhalten, wie es auch in realen Molekülen vorliegt. Abb.: PDI

PDI-Physiker Stefan Fölsch, Leiter des Teams, erklärt: „Für Anwendungen wie zum Beispiel den Quantencomputer ist es erforderlich, die Größe von Quantenpunkten – und damit deren Quantenzustand – genau kontrollieren zu können.“ Die störenden Einflüsse konnten bislang durch Kunstgriffe wie das Anlegen äußerer elektrischer Spannungen teilweise ausgeglichen werden. Nun hat das Forscher-Team aus Berlin, Japan und den USA das ambitioniertere Ziel, Quantenpunkte mit perfekter Genauigkeit herzustellen, erstmals erreicht.

Um einen atomar präzisen Quantenpunkt herzustellen, muss jedes seiner Atome exakt und fehlerfrei positioniert sein. Die Forscher setzten dafür die Quantenpunkte Atom für Atom mit Hilfe einer „atomaren Pinzette“ auf einer Unterlage zusammen. Bei der Unterlage handelt es sich um die Oberfläche eines Indium-Arsenid-Halbleiterkristalls. Kiyoshi Kanisawa, Physiker an den NTT Basic Research Laboratories in  Japan, erläutert die besondere Struktur: „Der Kristall besitzt in der obersten Schicht ein regelmäßiges Muster von Indium-Leerstellen – dadurch sind die möglichen Positionen der zu platzierenden Atome vorgegeben. Gleichzeitig liegen auf der obersten Schicht zusätzliche, positiv geladene, Indiumatome in ungeordneter Form vor.“

Ein Rastertunnelmikroskop dient den Wissenschaftlern normalerweise zum Abbilden von Oberflächen: Mit der Spitze tastet es die Ladungsdichteverteilung der Oberfläche ab, daraus lässt sich auf die Position der Atome zurückschließen. Die Physiker des PDI haben die Spitze nun nicht nur zum Abbilden, sondern zum Manipulieren einzelner Atome verwendet. Wie mit einer Pinzette haben sie jeweils ein Indiumatom auf die Spitze gepickt und an einer anderen Stelle positioniert. Das Team setzte Quantenpunkte in Form von linearen Ketten aus sechs bis 25 Indiumatomen zusammen.

Steve Erwin, Physiker aus Washington D.C. und Theoretiker des Teams, erklärt: „Die positiv geladenen Indiumatome bilden einen Quantenpunkt aus, indem sie Elektronen binden und quantisieren, die normalerweise der Oberfläche des Indium-Arsenid-Kristalls zuzuordnen sind.“

Dass die Elektronen quantisiert werden hängt damit zusammen, dass sie durch die positiv geladene Kette von Indiumatomen räumlich eingesperrt sind. Und weil sich das Ganze in so winzigen Dimensionen abspielt, gelten hier die Gesetze der Quantenphysik. Die räumliche Verteilung der Elektronen spiegelt deren quantenmechanische Wellenfunktion wider, „gleichsam einer schwingenden Saite entlang der Atomkette“, so PDI-Physiker Fölsch. Das Beispiel in der Abbildung zeigt sechs einzelne Quantenzustände, die – um im Bild der schwingenden Saite zu bleiben – dem Grundton (ganz unten) und den darauf folgenden Obertönen entsprechen.

Da die möglichen Positionen der Indiumatome durch das regelmäßige Gitter der Leerstellen vorgegeben sind, ist jeder Quantenpunkt aus einer festen Anzahl linear angeordneter Atome praktisch identisch, ohne jegliche Schwankung in seiner Größe oder Form.

Für Anwendungen in der Quanteninformatik müssen mehrere solcher Quantenpunkte miteinander gekoppelt werden. Die PDI-Forscher haben dafür dreifache Quantenpunkte aus je drei Ketten angeordnet. Diese koppeln in definierter Weise miteinander und es zeigt sich ein Verhalten, wie es auch in realen Molekülen vorliegt. „Mit diesen genau definierten Quantenzuständen kommen wir dem Quantencomputer einen weiteren Schritt näher“, betont Stefan Fölsch. 

Publikation

S. Fölsch1, J. Martínez-Blanco1, J. Yang1, K. Kanisawa2, S. C. Erwin3, Quantum dots with single-atom precision, Nature Nanotechnology, vol. 9, No. 7 (2014) 

1Paul-Drude-Institut für Festkörperelektronik

2NTT Basic Research Laboratories, Japan

3 Naval Research Laboratory, U.S.A. 

DOI: 10.1038/NNANO.2014.129

Kontakt

Paul-Drude-Institut für Festkörperelektronik (PDI)

Dr. Stefan Fölsch

Tel.:  +49 (0)30 20377 459

E-Mail: foelsch@pdi-berlin.de

Gesine Wiemer | Forschungsverbund Berlin
Weitere Informationen:
http://www.fv-berlin.de
http://www.fv-berlin.de/news/auf-die-spitze-getrieben-2013-kuenstliche-atome-fuer-den-quantencomputer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen