Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Spitze getrieben – künstliche Atome für den Quantencomputer

30.06.2014

Ein internationales Forscherteam unter Leitung des Paul-Drude-Instituts für Festkörperelektronik (PDI) hat identische Quantenpunkte aus einzelnen Atomen aufgebaut. Die perfekte Reproduzierbarkeit dieser mikroskopisch kleinen Objekte ist ein wichtiger Meilenstein für neue Technologien wie den Quantencomputer und die Nano-Optik. Die Ergebnisse des Forscherteams sind in der Juli-Ausgabe der Zeitschrift Nature Nanotechnology veröffentlicht.

Quantenpunkte werden oft als „künstliche Atome“ bezeichnet, da sie – genauso wie reale Atome – Elektronen in quantisierte Zustände mit diskreten Energien zwingen. Diese Analogie trifft allerdings nur bedingt zu: Während reale Atome identisch sind, bestehen herkömmliche Quantenpunkte aus Hunderten bis zu Tausenden von Atomen, was zu unvermeidlichen Schwankungen in ihrer Größe und Form und damit ihren physikalischen Eigenschaften führt.


Quantenpunkt aus 22 Atomen in sechs verschiedenen Quantenzuständen. | Abb. PDI


Drei Quantenpunkte koppeln in definierter Weise miteinander. Damit zeigen sie ein Verhalten, wie es auch in realen Molekülen vorliegt. Abb.: PDI

PDI-Physiker Stefan Fölsch, Leiter des Teams, erklärt: „Für Anwendungen wie zum Beispiel den Quantencomputer ist es erforderlich, die Größe von Quantenpunkten – und damit deren Quantenzustand – genau kontrollieren zu können.“ Die störenden Einflüsse konnten bislang durch Kunstgriffe wie das Anlegen äußerer elektrischer Spannungen teilweise ausgeglichen werden. Nun hat das Forscher-Team aus Berlin, Japan und den USA das ambitioniertere Ziel, Quantenpunkte mit perfekter Genauigkeit herzustellen, erstmals erreicht.

Um einen atomar präzisen Quantenpunkt herzustellen, muss jedes seiner Atome exakt und fehlerfrei positioniert sein. Die Forscher setzten dafür die Quantenpunkte Atom für Atom mit Hilfe einer „atomaren Pinzette“ auf einer Unterlage zusammen. Bei der Unterlage handelt es sich um die Oberfläche eines Indium-Arsenid-Halbleiterkristalls. Kiyoshi Kanisawa, Physiker an den NTT Basic Research Laboratories in  Japan, erläutert die besondere Struktur: „Der Kristall besitzt in der obersten Schicht ein regelmäßiges Muster von Indium-Leerstellen – dadurch sind die möglichen Positionen der zu platzierenden Atome vorgegeben. Gleichzeitig liegen auf der obersten Schicht zusätzliche, positiv geladene, Indiumatome in ungeordneter Form vor.“

Ein Rastertunnelmikroskop dient den Wissenschaftlern normalerweise zum Abbilden von Oberflächen: Mit der Spitze tastet es die Ladungsdichteverteilung der Oberfläche ab, daraus lässt sich auf die Position der Atome zurückschließen. Die Physiker des PDI haben die Spitze nun nicht nur zum Abbilden, sondern zum Manipulieren einzelner Atome verwendet. Wie mit einer Pinzette haben sie jeweils ein Indiumatom auf die Spitze gepickt und an einer anderen Stelle positioniert. Das Team setzte Quantenpunkte in Form von linearen Ketten aus sechs bis 25 Indiumatomen zusammen.

Steve Erwin, Physiker aus Washington D.C. und Theoretiker des Teams, erklärt: „Die positiv geladenen Indiumatome bilden einen Quantenpunkt aus, indem sie Elektronen binden und quantisieren, die normalerweise der Oberfläche des Indium-Arsenid-Kristalls zuzuordnen sind.“

Dass die Elektronen quantisiert werden hängt damit zusammen, dass sie durch die positiv geladene Kette von Indiumatomen räumlich eingesperrt sind. Und weil sich das Ganze in so winzigen Dimensionen abspielt, gelten hier die Gesetze der Quantenphysik. Die räumliche Verteilung der Elektronen spiegelt deren quantenmechanische Wellenfunktion wider, „gleichsam einer schwingenden Saite entlang der Atomkette“, so PDI-Physiker Fölsch. Das Beispiel in der Abbildung zeigt sechs einzelne Quantenzustände, die – um im Bild der schwingenden Saite zu bleiben – dem Grundton (ganz unten) und den darauf folgenden Obertönen entsprechen.

Da die möglichen Positionen der Indiumatome durch das regelmäßige Gitter der Leerstellen vorgegeben sind, ist jeder Quantenpunkt aus einer festen Anzahl linear angeordneter Atome praktisch identisch, ohne jegliche Schwankung in seiner Größe oder Form.

Für Anwendungen in der Quanteninformatik müssen mehrere solcher Quantenpunkte miteinander gekoppelt werden. Die PDI-Forscher haben dafür dreifache Quantenpunkte aus je drei Ketten angeordnet. Diese koppeln in definierter Weise miteinander und es zeigt sich ein Verhalten, wie es auch in realen Molekülen vorliegt. „Mit diesen genau definierten Quantenzuständen kommen wir dem Quantencomputer einen weiteren Schritt näher“, betont Stefan Fölsch. 

Publikation

S. Fölsch1, J. Martínez-Blanco1, J. Yang1, K. Kanisawa2, S. C. Erwin3, Quantum dots with single-atom precision, Nature Nanotechnology, vol. 9, No. 7 (2014) 

1Paul-Drude-Institut für Festkörperelektronik

2NTT Basic Research Laboratories, Japan

3 Naval Research Laboratory, U.S.A. 

DOI: 10.1038/NNANO.2014.129

Kontakt

Paul-Drude-Institut für Festkörperelektronik (PDI)

Dr. Stefan Fölsch

Tel.:  +49 (0)30 20377 459

E-Mail: foelsch@pdi-berlin.de

Gesine Wiemer | Forschungsverbund Berlin
Weitere Informationen:
http://www.fv-berlin.de
http://www.fv-berlin.de/news/auf-die-spitze-getrieben-2013-kuenstliche-atome-fuer-den-quantencomputer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie