Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach einer zweiten Erde

27.02.2014

Das Weltraumteleskop PLATO soll 2024 starten / Prof. Dr. Heike Rauer leitet den Bau der Teleskope

Sie wollen eine zweite Erde finden. Das ist das Ziel der PLATO-Mission. Unter der Leitung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) wird ein internationales Konsortium sich auf die Suche nach einem der Erde ähnlichen Planeten außerhalb unseres Sonnensystems machen.


Das Weltraumteleskop PLATO soll nach der "zweiten" Erde suchen. Dafür untersucht es Planeten außerhalb unseres Sonnensystems, die in einer lebensfreundlichen, habitablen Zone um ihren Stern kreisen. © DLR (CC-BY 3.0)

Die Wissenschaftlerinnen und Wissenschaftler haben genaue Vorstellungen von ihm: Er sollte sich in einer genau ausbalancierten günstigen Entfernung von seinem Stern befinden und auf seiner Oberfläche sollte Wasser vorhanden sein. Unter fünf vorgeschlagenen Missionen wurde die PLATO-Mission von der Europäischen Weltraumorganisation ESA jetzt ausgewählt. 2024 soll das Weltraumteleskop starten.

PLATO (PLAnetary Transits and Oscillations of Stars) wird in 1,5 Millionen Kilometern Entfernung von der Erde – von einem der Lagrange-Punkte aus – für mindestens sechs Jahre den Himmel beobachten. Dabei, so schätzen die Planetenforscher, wird das Teleskop Tausende neuer Planeten um andere Sterne entdecken. „Es geht zunächst einmal darum, ein Planetensystem zu finden, das unserem Sonnensystem ähnlich ist", sagt die Leiterin des PLATO-Instrumentenkonsortiums Prof. Dr. Heike Rauer vom DLR-Institut für Planetenforschung und vom Zentrum für Astronomie und Astrophysik der TU Berlin, wo sie eine S-Professur für Planetenphysik innehat.

34 einzelne Teleskope auf einer Beobachtungsplattform können dafür zusammengeschaltet und somit gebündelt werden. „Wir werden Planeten finden, die ihren sonnenähnlichen Stern in der lebensfreundlichen, der habitablen Zone umkreisen: Planeten, auf deren Oberfläche Wasser vorhanden sein könnte und auf denen dann vielleicht sogar die Entwicklung von Leben, wie wir es kennen, möglich wäre", fährt die TU-Professorin Heike Rauer fort. Als Leiterin des PLATO-Instrumentenkonsortiums ist sie verantwortlich für den Bau der Teleskope, den Aufbau des wissenschaftlichen Datenzentrums und die Analyse der Daten.

Um die weit entfernten Planeten zu entdecken, die um ihre hellen Sterne wie die Erde um die Sonne kreisen, greifen die Wissenschaftler auf eine „indirekte“ Methode zurück: Sie beobachten die hellen Sterne - zieht ein Planet dann bei seiner Umlaufbahn vor dieser „Sonne“ vorbei, schwächt er bei diesem „Transit“ deren Licht leicht ab. Außerdem wird PLATO die Schwingungen der Sterne vermessen.

Für die Planetenforscher bedeutet dies: Sie erfahren nicht nur von der Existenz der Exoplaneten außerhalb unseres Sonnensystems, sondern bestimmen auch ihren Aufbau, ihren Radius und ihr Alter. „Wir sind an den Gesteinsplaneten mit einem Eisenkern wie unsere Erde interessiert - und nicht an Mini-Gasplaneten", betont Prof. Rauer. Die Mission wird ungefähr die Hälfte des Himmels beobachten und dabei etwa eine Million Sterne untersuchen.

„Dieses einzigartige europäische Weltraumteleskop für die Suche nach Exoplaneten ermöglicht es deutschen und europäischen Wissenschaftlern, auf diesem Gebiet der Astronomie absolute Spitzenforschung zu betreiben", sagt DLR-Vorstandsvorsitzender Prof. Johann-Dietrich Wörner.

Die DLR-Wissenschaftler bauen bei der PLATO-Mission auf ihre Erfahrungen mit den Missionen CoRoT und Kepler auf. Beide Missionen entdeckten zahlreiche Exoplaneten. „Eine zweite Erde war aber bisher nicht dabei", so Prof. Dr. Heike Rauer. Sie ist Projektleiterin für CoRoT beim DLR. 

Fotomaterial zum Download

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Heike Rauer, Abteilungsleitung, Institut für Planetenforschung, Extrasolare Planeten und Atmosphären, Berlin, Tel.: +49 30 67055-430, Fax: +49 30 67055-384, heike.rauer@dlr.de

Weitere Informationen:

http://www.tu-berlin.de/?id=145176

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten