Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Quantenrennbahn

16.12.2016

Physiker der Universität Konstanz sind an einem internationalen Kooperationsprojekt zur schnelleren Steuerung eines Quantenbits beteiligt

Angefangen bei Laptops bis hin zu Mobiltelefonen basiert der Fortschritt der entsprechenden Technologie auf der stetig wachsenden Geschwindigkeit, mit der die elektrische Ladung in Schaltkreisen gesteuert werden kann. Gleichzeitig führt die schnellere Steuerung des Quantenzustandes im atomaren oder Nanobereich zu Entwicklungssprüngen im Bereich der Quantentechnologie.


Kompliziert geformte Laserimpulse bauen eine Rennbahn für die beschleunigte Dynamik von Quantenpartikeln, die das schnellere Ändern eines Quantenbits ermöglichen.

Foto: Peter Allen


Dr. Brian Zhou, Postdoc an der University of Chicago, richtet die Laser auf die in den Experimenten verwendeten Diamantenchips aus.

Foto: Awschalom Lab

Eine internationale Kooperation von Physikern unter Beteiligung der Universität Konstanz fand eine neue Methode für die schnellere Steuerung eines Quantenbits. Den Physikern gelang es in Experimenten mit einzelnen Kristalldefekten in Diamant, Quantensysteme zu erzeugen, die bei hoher Geschwindigkeit weniger fehleranfällig sind. Die Ergebnisse wurden im Wissenschaftsjournal Nature Physics vom 28. November 2016 veröffentlicht.

Prof. Dr. Guido Burkard und Dr. Adrian Auer von der Universität Konstanz beteiligten sich mit der Modellierung der durch äußere Einwirkung entstandenen Fehler sowie der Auswertung der experimentellen Daten. Burkard, ein Experte im Bereich Diamant-basierter Quantensysteme, sagt: „Vielversprechend für den Einsatz dieser Techniken auch außerhalb des Labors ist, dass sie auch dann effektiv sind, wenn das Quantensystem nicht perfekt isoliert ist.“

Zum Verständnis des Experiments können ovale Rennstrecken wie etwa die in Indianapolis dienen. Damit die Rennautos die Kurven mit hoher Geschwindigkeit durchfahren können, sind diese bis zu 30 Grad geneigt. Nach der Newtonschen Mechanik ermöglicht diese Innenneigung der Fahrbahn, die Zentrifugalbeschleunigung des Autos beziehungsweise seine Tendenz, aus der Kurve herausgetragen zu werden, zu vermindern. Je höher die Geschwindigkeit, desto steiler muss die Kurve sein.

„Die Dynamik von Quantenpartikeln verhält sich analog“, sagt Prof. Dr. Aashish Clerk, Professor für Theoretische Physik an der McGill University in Montréal, Kanada. „Auch wenn die Bewegungsgleichungen unterschiedlich sind, so muss man doch auch die richtige Bahn entwerfen, um den Quantenzustand eines Partikels mit hoher Geschwindigkeit zu verändern."

Clerk entwickelte zusammen mit seinen Kollegen Dr. Alexandre Baksic und Dr. Hugo Ribeiro, der bei Guido Burkard an der Universität Konstanz promoviert wurde, eine neue Technik, die schnellere Quantendynamik ermöglicht, indem störende Beschleunigungen, denen der Quantenpartikel ausgesetzt ist, absorbiert werden. Werden diese Beschleunigungen nicht kompensiert, lenken sie den Partikel von seiner angestrebten Laufbahn im Raum des Quantenzustandes ab, ähnlich wie die Zentrifugalbeschleunigung das Rennauto von seinem geplanten Kurs abbringt.

In Gesprächen mit Mitgliedern seiner eigenen und Clerks Gruppe stellte Prof. Dr. David Awschalom, Professor für Spintronik und Quanteninformation am Institute for Molecular Engineering der University of Chicago, USA, fest, dass man mit der neuen Theorie die Diamant-basierten Quantengeräte in seinen Laboren schneller machen kann. Genau wie die Steilkurven eine Herausforderung darstellten, war es eine Herausforderung, die von Clerk und seinen Kollegen geplanten Kontrollsequenzen in der Quantentechnik experimentell durchzuführen.

Um die Quantenrennbahn zu bauen, musste ein kompliziert geformter, synchronisierter Laserimpuls auf einzelne Elektronen gelenkt werden, die an Defekten innerhalb ihres Diamant-Chips eingeschlossen sind. Diese experimentelle Leistung gelang Erstautor Dr. Brian Zhou in Zusammenarbeit mit Christopher Yale, F. Joseph Heremans und Paul Jerger.

„Wir konnten zeigen, dass diese neue Anordnung den Zustand eines Quantenbits 300 mal schneller als konventionelle Methoden von ‚aus‘ zu ‚an‘ ändern kann", sagt Awschalom. „Es zählt jede Nanosekunde, die wir in der Durchführungszeit einsparen können, um die Auswirkung der Quantendekohärenz zu reduzieren“, erklärt er.

Die Wissenschaftler gehen davon aus, dass ihre Methoden für eine schnelle und präzise Steuerung der physikalischen Bewegung von Atomen oder den Transfer von Quantenzuständen zwischen verschiedenen Systemen Anwendung finden können, zum Beispiel für sichere Kommunikation und Simulationen komplexer Systeme.

Originalveröffentlichung:
Brian B. Zhou, Alexandre Baksic, Hugo Ribeiro, Christopher G. Yale, F. Joseph Heremans, Paul C. Jerger, Adrian Auer, Guido Burkard, Aashish A. Clerk, David D. Awschalom: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nature Physics (28. November 2016).
DOI: 10.1038/nphys3967

Faktenübersicht:
• Neben der Universität Konstanz sind die University of Chicago (USA), das Argonne National Laboratory (USA) sowie die McGill University in Montréal (Kanada) an dem Kooperationsprojekt beteiligt.
• Das Projekt wurde gefördert durch: Department of Energy (USA), Office of Science (USA), Office of Basic Energy Sciences (USA), Materials Sciences and Engineering Division (USA), Air Force Office of Scientific Research (USA), National Science Foundation (USA) und Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereichs SFB767 am Fachbereich Physik der Universität Konstanz.


Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics