Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum schnelleren Quantencomputer?

11.08.2015

Ungeordnetes Quantenrechnen verbessert Effizienz

Ein Team von PhysikerInnen der Universität Wien und der Österreichischen Akademie der Wissenschaften um Philip Walther und Caslav Brukner demonstrieren ein neues Quantenrechenschema, bei dem verschiedene Reihenfolgen von Rechenoperationen gleichzeitig prozessiert werden.


Superposition von Quantengattern

Copyright: Gruppe Philip Walther, Universität Wien

Die WissenschafterInnen nutzten diesen Effekt, um eine Aufgabe effizienter als mit einem Standard-Quantencomputer zu lösen. Ihre Ideen könnten die Grundlage für eine neue Art des Quantenrechnens mit dem Potenzial für noch schnellere Quantencomputer bilden. Ihre Ergebnisse wurden in "Nature Communications" veröffentlicht.

Seit ihrer frühen Entwicklung hat die Quantenmechanik unserer natürlichen Denkweise getrotzt und PhysikerInnen dazu gezwungen, mit sonderbaren Ideen zurechtzukommen. Obwohl sie schwierig zu begreifen sein mögen, können Quantenphänomene im Experiment beobachtet werden.

Zudem haben WissenschafterInnen in den letzten Jahrzehnten gezeigt, dass diese bizarren Quanteneffekte für viele, erstaunlich bedeutungsvolle Anwendungen genutzt werden können: von ultra-sicherer Datenübertragung zu super-schnellen Computern und Simulatoren von komplexen Quantensystemen.

Eine der am vielversprechendsten Anwendungen von Quantentechnologie ist der Quantencomputer. Um eine nützliche Rechenoperation durchführen zu können, benötigt man eine ausreichende Menge an Quantengattern, den Grundbausteinen eines Quantencomputers. Diese herzustellen ist allerdings schwierig. Üblicherweise werden bei den Quantenrechnungen die Quantengatter in einer bestimmten Abfolge geschaltet: ein Gatter nach dem anderen.

Neulich wurde jedoch entdeckt, dass die Quantenmechanik eine "Überlagerung der Quantengatter" erlaubt. Bei korrekter technischer Umsetzung bedeutet dies, dass ein Set von Quantengattern in allen möglichen Abfolgen gleichzeitig geschaltet werden kann. Überraschenderweise kann dieser Effekt dazu benutzt werden, um die Gesamtanzahl der Gatter, die für eine bestimmte Quantenrechnung notwendig ist, zu reduzieren.

Alle Abfolgen gleichzeitig

Kürzlich erkannte ein Team um Philip Walther, Gruppensprecher der Quantenoptik, Quantennanophysik und Quanteninformation, dass die Überlagerung der Abfolge der Quantengatter im Labor verwirklicht werden kann – eine Idee, die von ihren KollegInnen um Caslav Brukner theoretisch entwickelt wurde. In einer Superposition der Abfolge von Quantengattern ist es grundsätzlich unmöglich zu wissen, ob eine Rechenoperation vor einer anderen oder umgekehrt stattfindet.

Das bedeutet, dass zwei Quantengatter A und B zur gleichen Zeit in beiden Abfolgen geschaltet werden können. In anderen Worten: Gatter A schaltet vor Gatter B und B schaltet vor A. Die PhysikerInnen aus der Gruppe von Philip Walther entwickelten ein Experiment, in welchem die zwei Quantengatter in beiden Abfolgen auf Einzelphotonen angewandt wurden.

Die Ergebnisse ihres Experiments bestätigten, dass es aus Prinzip unmöglich herauszufinden ist, welches Gatter zuerst geschaltet wurde. Das Experiment war jedoch nicht einfach ein Kuriosum. "Tatsächlich konnten wir einen Quantenalgorithmus laufen lassen, der die Gatter effizienter als alle anderen bisher bekannten Algorithmen charakterisierte", so Lorenzo Procopio, Erstautor der Studie.

Aus einer einzelnen Messung am Photon prüften sie eine bestimmte Eigenschaft der beiden Quantengatter und bestätigten dadurch, dass die Gatter in beiden Abfolgen gleichzeitig geschaltet wurden. Sobald mehr Gatter zur Aufgabe hinzugefügt werden, wird die neue Methode im Vergleich zu bisherigen Techniken sogar noch effizienter.

Der Weg in die Zukunft

Den ForscherInnen gelang es, eine Superposition von Quantengattern erstmals im Labor umzusetzen. Zugleich wurde das Experiment erfolgreich dazu genutzt, eine neuartige Form des Quantenrechnens zu demonstrieren. Die WissenschafterInnen konnten eine Rechenaufgabe mit einer Effizienz lösen, die mit den alten Quantenrechenschemen nicht erreicht werden kann. Ihre Arbeit stößt damit die Tür für künftige Studien zu neuartigen Quantenrechenschemen auf. Obwohl das volle Ausmaß ihrer Bedeutung noch unbekannt ist, repräsentiert diese Arbeit einen neuen, spannenden Weg, um theoretische, physikalische Grundlagenforschung mit experimentellem Quantenrechnen zu verbinden.

Publikation in "Nature Communications":
"Experimental Superposition of Orders of Quantum Gates":
Lorenzo M. Procopio, Amir Moqanaki, Mateus Araújo, Fabio Costa, Irati Alonso Calafell, Emma G. Dowd, Deny R. Hamel, Lee A. Rozema, Caslav Brukner, and Philip Walther.
Nature Communications
DOI: 10.1038/ncomms8913

Wissenschaftliche Kontakte
Dr. Lee Rozema (Englisch)
Quantum Information Science and Quantum Computation
Fakultät für Physik, Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 67
lee.rozema@univie.ac.at

Assoz. Prof. Dr. Philip Walther (Deutsch und Englisch)
Quantum Information Science and Quantum Computation
Fakultät für Physik, Universität Wien
1090 Wien, Boltzmanngasse 5
M +43-664-60277-725 60
philip.walther@univie.ac.at
http://walther.quantum.at
http://www.vcq.quantum.at/

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren Kooperationspartnern, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften