Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekundenphysik - Filme aus dem Mikrokosmos

22.04.2016

Münchner Physikern gelingt es, ultrakurze Elektronenpulse mit Terahertz-Strahlung unter Kontrolle zu bringen. Das eröffnet die Chance, selbst Elektronen in Bewegung sichtbar zu machen.

Zu beobachten, wie Atome und Elektronen in einem Material auf externe Reize reagieren, verschafft Wissenschaftlern Einblick in Rätsel der Festkörperphysik, etwa um Hochtemperatursupraleiter und andere exotische Materialien.


Ein Puls aus Elektronen (grün, von links kommend) trifft auf eine mikrostrukturierte Antenne, die mit Laser-erzeugter Terahertz-Strahlung (rot) betrieben wird. Dadurch verkürzt sich die Dauer des Elektronenpulses auf wenige Femtosekunden. Grafik: Christian Hackenberger

Mit kurzen Elektronenpulsen filmt man solche Bewegungen. Wenn ein Elektron an einem Kristall streut, interferiert es aufgrund seiner quantenmechanischen, wellenartigen Eigenschaften mit sich selbst und erzeugt ein Beugungsbild. Indem sie diese Bilder aufzeichnen, bestimmen Forscher die atomare und elektronische Struktur des Materials und sehen Details, die kleiner sind als ein Atom.

Elektronenpulse sind jedoch schwierig zu erzeugen, da Elektronen Ladung besitzen und sich langsamer als mit Lichtgeschwindigkeit bewegen. Die Elektronendiffraktometrie ist daher noch weit von der Zeitauflösung entfernt, die es bräuchte, um Elektronenbewegungen in einem Material zu sehen. Jetzt ist es einem Team um Dr. Peter Baum und Professor Ferenc Krausz am Labor für Attosekundenphysik (LAP) der LMU und des Max-Planck Instituts für Quantenoptik (MPQ) gelungen, eine neue Technik zur Kontrolle ultrakurzer Elektronenpulse zu entwickeln.

Während bis heute Mikrowellentechnologie verwendet wird, um Elektronenpulse zu beeinflussen, haben die Forscher nun erstmals optisch erzeugte Terahertz-Strahlung eingesetzt. Mit der neuen Technik haben die Physiker Elektronenpulse deutlich verkürzt. Diese Terahertz-Technik bietet die Chance, nicht nur Atome, sondern auch Elektronen in Bewegung sichtbar werden zu lassen.

Die Beobachtung von Atomen und deren Bewegung verlangt spezielle Methoden. Elektronenmikroskopie und Elektronenbeugung ermöglichen die räumliche Auflösung, um Atome zu sehen. Um atomare Bewegungen zu filmen, braucht man zudem ultrakurze Verschlusszeiten – je kürzer die Elektronenpulse, desto schärfer die Bilder aus dem Mikrokosmos. Elektronenpulse von Femtosekunden- oder Attosekundendauer (10-15 bis 10-18 Sekunden) wären ideal, um Prozesse in Materie mit der erforderlichen Auflösung in Raum und Zeit, in vier Dimensionen also, zu beobachten.

Mit Lasern ist es bereits möglich, solche extrem kurzen Lichtpulse zu erzeugen, sie haben jedoch eine zu große Wellenlänge, um Atome oder Ladungen in Molekülen und Festkörpern direkt sichtbar zu machen. Elektronen sind hier dem Licht überlegen, weil ihre Wellenlänge um ein Hunderttausendfaches kleiner ist. Jedoch ist die Erzeugung kurzer Pulse viel schwieriger als mit Licht, da Elektronen, anders als Photonen, Ladung und Ruhemasse besitzen.

Baum und Krausz nutzen jetzt die Vorteile der Terahertz-Strahlung. Ähnlich wie sichtbares Licht ist sie eine Form elektromagnetischer Strahlung. Die Wellenlänge ist jedoch um einiges größer als die von sichtbarem Licht und fällt in den Bereich zwischen Mikrowellen und Infrarotstrahlung.

Die Forscher richteten die Terahertz- und die Elektronenpulse auf eine spezielle Antenne, an der beide miteinander interagierten. Sie orientierten das elektrische Feld der Terahertz-Strahlung so, dass Elektronen, die früher ankommen, abgebremst und solche, die später ankommen, beschleunigt werden. Unter diesen Voraussetzungen wird der Elektronenpuls während seiner Ausbreitung kürzer und kürzer, bis er eine minimale Dauer an der Position der zu untersuchenden Materialprobe erreicht.

Die Forscher bestimmten zudem mit ihrer neuen Methode, wie lang die Elektronenpulse waren, als diese an der Probenposition ankamen. Hierzu interagierten die Elektronenpulse ein zweites Mal mit der Terahertz-Strahlung, diesmal aber so, dass die elektromagnetischen Terahertz-Felder eine seitliche Ablenkung der Elektronen bewirken, abhängig von deren genauem Interaktionszeitpunkt. Auf diese Weise bauten die Physiker quasi eine Stoppuhr für Elektronenpulse.

Die neue Technologie versetzt die Physiker in die Lage, die Elektronenpulse viel weiter zu verkürzen und außerdem viel genauer zu synchronisieren als bisher möglich, um immer schnellere atomare und letztendlich elektronische Bewegungen aufzuzeichnen. Ziel ist es, die attosekunden-schnellen Bewegungen von Ladungswolken in und um Atome zu verfolgen, um die Grundlagen der Licht-Materie-Wechselwirkung besser zu verstehen. Die Erkenntnisse könnten der Entwicklung neuer photonischer und elektronischer Materialien und Geräte dienen, die die Technologien von Morgen antreiben. (LMU/MPQ)

Publikation:
C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, P. Baum
All-optical control and metrology of electron pulses
Science 22. April 2016
http://science.sciencemag.org/content/352/6284/429

Kontakt:
Dr. Peter Baum
Ludwig-Maximilians-University Munich
Am Coulombwall 1, 85748 Garching, Germany
Tel: +49 89 28914102
E-Mail: peter.baum@lmu.de
http://www.ultrafast-electron-imaging.de

Prof. Ferenc Krausz
Max-Planck Institute of Quantum Optics, Garching
Tel: +49 89 32905-600
E-Mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics