Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekundenphysik - Filme aus dem Mikrokosmos

22.04.2016

Münchner Physikern gelingt es, ultrakurze Elektronenpulse mit Terahertz-Strahlung unter Kontrolle zu bringen. Das eröffnet die Chance, selbst Elektronen in Bewegung sichtbar zu machen.

Zu beobachten, wie Atome und Elektronen in einem Material auf externe Reize reagieren, verschafft Wissenschaftlern Einblick in Rätsel der Festkörperphysik, etwa um Hochtemperatursupraleiter und andere exotische Materialien.


Ein Puls aus Elektronen (grün, von links kommend) trifft auf eine mikrostrukturierte Antenne, die mit Laser-erzeugter Terahertz-Strahlung (rot) betrieben wird. Dadurch verkürzt sich die Dauer des Elektronenpulses auf wenige Femtosekunden. Grafik: Christian Hackenberger

Mit kurzen Elektronenpulsen filmt man solche Bewegungen. Wenn ein Elektron an einem Kristall streut, interferiert es aufgrund seiner quantenmechanischen, wellenartigen Eigenschaften mit sich selbst und erzeugt ein Beugungsbild. Indem sie diese Bilder aufzeichnen, bestimmen Forscher die atomare und elektronische Struktur des Materials und sehen Details, die kleiner sind als ein Atom.

Elektronenpulse sind jedoch schwierig zu erzeugen, da Elektronen Ladung besitzen und sich langsamer als mit Lichtgeschwindigkeit bewegen. Die Elektronendiffraktometrie ist daher noch weit von der Zeitauflösung entfernt, die es bräuchte, um Elektronenbewegungen in einem Material zu sehen. Jetzt ist es einem Team um Dr. Peter Baum und Professor Ferenc Krausz am Labor für Attosekundenphysik (LAP) der LMU und des Max-Planck Instituts für Quantenoptik (MPQ) gelungen, eine neue Technik zur Kontrolle ultrakurzer Elektronenpulse zu entwickeln.

Während bis heute Mikrowellentechnologie verwendet wird, um Elektronenpulse zu beeinflussen, haben die Forscher nun erstmals optisch erzeugte Terahertz-Strahlung eingesetzt. Mit der neuen Technik haben die Physiker Elektronenpulse deutlich verkürzt. Diese Terahertz-Technik bietet die Chance, nicht nur Atome, sondern auch Elektronen in Bewegung sichtbar werden zu lassen.

Die Beobachtung von Atomen und deren Bewegung verlangt spezielle Methoden. Elektronenmikroskopie und Elektronenbeugung ermöglichen die räumliche Auflösung, um Atome zu sehen. Um atomare Bewegungen zu filmen, braucht man zudem ultrakurze Verschlusszeiten – je kürzer die Elektronenpulse, desto schärfer die Bilder aus dem Mikrokosmos. Elektronenpulse von Femtosekunden- oder Attosekundendauer (10-15 bis 10-18 Sekunden) wären ideal, um Prozesse in Materie mit der erforderlichen Auflösung in Raum und Zeit, in vier Dimensionen also, zu beobachten.

Mit Lasern ist es bereits möglich, solche extrem kurzen Lichtpulse zu erzeugen, sie haben jedoch eine zu große Wellenlänge, um Atome oder Ladungen in Molekülen und Festkörpern direkt sichtbar zu machen. Elektronen sind hier dem Licht überlegen, weil ihre Wellenlänge um ein Hunderttausendfaches kleiner ist. Jedoch ist die Erzeugung kurzer Pulse viel schwieriger als mit Licht, da Elektronen, anders als Photonen, Ladung und Ruhemasse besitzen.

Baum und Krausz nutzen jetzt die Vorteile der Terahertz-Strahlung. Ähnlich wie sichtbares Licht ist sie eine Form elektromagnetischer Strahlung. Die Wellenlänge ist jedoch um einiges größer als die von sichtbarem Licht und fällt in den Bereich zwischen Mikrowellen und Infrarotstrahlung.

Die Forscher richteten die Terahertz- und die Elektronenpulse auf eine spezielle Antenne, an der beide miteinander interagierten. Sie orientierten das elektrische Feld der Terahertz-Strahlung so, dass Elektronen, die früher ankommen, abgebremst und solche, die später ankommen, beschleunigt werden. Unter diesen Voraussetzungen wird der Elektronenpuls während seiner Ausbreitung kürzer und kürzer, bis er eine minimale Dauer an der Position der zu untersuchenden Materialprobe erreicht.

Die Forscher bestimmten zudem mit ihrer neuen Methode, wie lang die Elektronenpulse waren, als diese an der Probenposition ankamen. Hierzu interagierten die Elektronenpulse ein zweites Mal mit der Terahertz-Strahlung, diesmal aber so, dass die elektromagnetischen Terahertz-Felder eine seitliche Ablenkung der Elektronen bewirken, abhängig von deren genauem Interaktionszeitpunkt. Auf diese Weise bauten die Physiker quasi eine Stoppuhr für Elektronenpulse.

Die neue Technologie versetzt die Physiker in die Lage, die Elektronenpulse viel weiter zu verkürzen und außerdem viel genauer zu synchronisieren als bisher möglich, um immer schnellere atomare und letztendlich elektronische Bewegungen aufzuzeichnen. Ziel ist es, die attosekunden-schnellen Bewegungen von Ladungswolken in und um Atome zu verfolgen, um die Grundlagen der Licht-Materie-Wechselwirkung besser zu verstehen. Die Erkenntnisse könnten der Entwicklung neuer photonischer und elektronischer Materialien und Geräte dienen, die die Technologien von Morgen antreiben. (LMU/MPQ)

Publikation:
C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, P. Baum
All-optical control and metrology of electron pulses
Science 22. April 2016
http://science.sciencemag.org/content/352/6284/429

Kontakt:
Dr. Peter Baum
Ludwig-Maximilians-University Munich
Am Coulombwall 1, 85748 Garching, Germany
Tel: +49 89 28914102
E-Mail: peter.baum@lmu.de
http://www.ultrafast-electron-imaging.de

Prof. Ferenc Krausz
Max-Planck Institute of Quantum Optics, Garching
Tel: +49 89 32905-600
E-Mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise