Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekundenkino für Elektronenlöcher

23.07.2009
Forscher haben mit Hilfe der "High Harmonic Generation Spectroscopy" erstmals "live" verfolgt, wie sich die elektronischen Zustände im Inneren eines Moleküls verändern, das durch ein starkes Laserfeld ionisiert wird.

Forscher können erstmals "live" verfolgen, wie sich die elektronischen Zustände im Inneren eines Moleküls verändern, das durch ein starkes Laserfeld ionisiert wird. Beim Ionisieren tritt ein Elektron aus dem Molekül aus und im zurückbleibenden Ion müssen sich die elektronischen Zustände neu ordnen.

Dies passiert in unvorstellbar kurzen Zeitskalen - den Attosekunden. Forscher um Dr. Olga Smirnova vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie und vom National Research Council of Canada konnten diese Vorgänge mit Hilfe der so genannten "High Harmonic Generation Spectroscopy" aufzeichnen. Über ihre Ergebnisse berichten sie in der aktuellen Ausgabe von Nature (doi: 10.1038/nature08253).

Die Forscher haben in einem Laserfeld ausgerichtete Kohlendioxid-Moleküle mit Laserpulsen von wenigen Femtosekunden Dauer beschossen. Eine Femtosekunde ist eine Millionstel Milliardstel Sekunde. Bei diesen kurzen Pulsen entsteht bei einer sehr hohen Laserleistung ein so starkes elektromagnetisches Feld, dass die Elektronen die Anziehungskraft des Atomkerns überwinden, sie "tunneln" ins Kontinuum sagen die Forscher dazu.

Dadurch, dass sich das Laserfeld wellenförmig ändert, fliegen manche der Elektronen jedoch nicht davon, sondern schnipsen wie von einem Gummiband gehalten zurück und vereinigen sich wieder mit dem Ion. Bei der Wiedervereinigung geben die Elektronen die aufgenommene Energie in Form von Licht ab. Dieses Licht hat eine besondere Eigenschaft: Seine Frequenz entspricht ungeraden Vielfachen der eingestrahlten Frequenz; bis zum hundertfachen der Ausgangsfrequenz ist möglich. Hohe Harmonische nennen Physiker solche Frequenzvielfache. Es entstehen also innerhalb der Zeit eines eingestrahlten Femotsekundenpulses noch kürze Lichtblitze - mit kürzeren Wellenlängen -, die nur die Dauer von Attosekunden haben. Eine Attosekunden ist der tausendste Teil einer Femtosekunde.

Mit Hilfe dieses "Attosekundenkinos" konnten die Forscher nun verfolgen, wie sich das Elektronenloch, welches das ausgetretene Elektron hinterlassen hat, zeitlich und räumlich verändert. Die Forscher änderten dafür die Intensität der Femtosekunden-Lichtblitze und den Winkel, in welchem die Kohlendioxid-Moleküle beschossen wurden. Über die Intensität der entstandenen Hohen Harmonischen konnten sie ermitteln, aus welcher "Bahn" - also welchem Energieniveau - das Elektron stammte. Mit Hilfe einer Analyse der Harmonischen als Funktion der eingestrahlten Intensität der Femotosekundenpulse konnten die Forscher schließlich Aussagen darüber treffen, wo das Elektronenloch seinen Anfang nahm und wohin es wanderte.

Kontakt:
Dr. Olga Smirnova, Theory group leader, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Division B
Max-Born-Str. 2A
12489 Berlin
phone: +49-30-63 92-13 56
email: Olga.Smirnova@mbi-berlin.de
Dr. Olga Smirnova ist ab 23.7. telefonisch im MBI zu erreichen, davor nur per E-Mail. Dr. Smirnova spricht nur englisch.

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten