Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekundenkamera für Nanostrukturen

31.05.2016

Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität haben in Zusammenarbeit mit Wissenschaftlern der Friedrich-Alexander-Universität Erlangen-Nürnberg ein Licht-Materie-Phänomen in der Nanooptik beobachtet, das nur Attosekunden dauert.

Die Wechselwirkung zwischen Licht und Materie ist von besonderer Bedeutung in der Natur, insbesondere in der Photosynthese. Licht-Materie Wechselwirkungen werden auch technisch angewendet und sind für die Elektronik der Zukunft wichtig. Denn eine Technologie, die auf Lichtwellen kodierte Daten überträgt oder speichert, wäre fast 100.000 Mal schneller als heutige Systeme.


Trifft Laserlicht auf eine Nanonadel (gelb), entstehen an der Oberfläche elektromagnetische Nahfelder. Ein zweiter Laserpuls löst aus der Nadel ein Elektron (grün). Dies erlaubt es, die Charakteristik der Nahfelder zu bestimmen. Bild: Christian Hackenberger

Eine Licht-Materie-Wechselwirkung, die den Weg ebnen könnte zu einer von Lichtwellen gesteuerten Elektronik, haben nun Wissenschaftler des Labors für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) in Zusammenarbeit mit Kollegen vom Lehrstuhl für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg untersucht.

Die Forscher schickten starke Laserpulse auf einen winzigen Nanodraht aus Gold. Die ultrakurzen Laserpulse regten die frei beweglichen Elektronen im Metall zu Schwingungen an. An der Oberfläche des Drahtes entstanden dadurch elektromagnetische „Nahfelder“.

Die Nahfelder pulsierten dann um wenige hundert Attosekunden verschoben gegenüber der Welle des anregenden Lichtfeldes (eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde). Mit Attosekunden Lichtblitzen, die die Forscher anschließend auf den Nanodraht schickten, konnten sie diese winzige Verschiebung der Nahfelder vermessen.

Fällt Licht auf Metalle, kann das im Mikrokosmos eigenartige Dinge an deren Oberfläche auslösen. Das elektromagnetische Feld des Lichts regt Elektronen in den Metallatomen zum Schwingen an. Durch diese Wechselwirkung entstehen sogenannte „Nahfelder“ – elektromagnetische Felder, die nahe der Oberfläche des Metalls lokalisiert sind.

Wie sich diese Nahfelder unter Lichteinfluss verhalten, hat jetzt ein internationales Team von Physikern im Labor für Attosekundenphysik der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik in enger Zusammenarbeit mit Wissenschaftlern des Lehrstuhls für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg beobachtet.

Dazu schickten die Forscher starke Infrarot-Laserpulse auf einen Nanodraht aus Gold. Diese Laserpulse sind so kurz, dass sie nur über wenige Schwingungen des Lichtfeldes verfügen. Beim Auftreffen auf die Nanonadel regte das Licht kollektive Schwingungen der leitenden Elektronen in dem Verbund aus Goldatomen an. Die Elektronenbewegungen bewirkten die Ausbildung der Nahfelder an der Oberfläche des Drahtes.

Nun wollten die Physiker herausfinden, in welcher zeitlichen Relation die Nahfelder zu den Lichtfeldern standen. Dazu schickten sie kurz nach dem ersten Laserpuls einen zweiten, nur einige hundert Attosekunden kurzen Lichtblitz auf die Nanostruktur.

Der zweite Blitz löste einzelne Elektronen aus dem Nanodraht aus. An der Oberfläche angekommen, wurden die Teilchen durch die Nahfelder beschleunigt und detektiert. Die Analyse dieser Teilchen ergab, dass die Nahfelder rund 250 Attosekunden zeitversetzt zum einfallenden Licht schwingen und seinem Feld quasi voraneilen. Das heißt: Die Nahfeld-Schwingungen erreichen 250 Attosekunden früher einen maximalen Ausschlag als die Schwingung des Lichtfeldes.

„Mit der von uns demonstrierten Messmethode können Felder und Oberflächenwellen an Nanostrukturen, welche in der Lichtwellen-Elektronik eine zentrale Rolle spielen, gestochen scharf abgebildet werden.“, erklärt Prof. Matthias Kling, der Leiter der Experimente in München.

Die Versuche ebnen den Weg hin zu komplexeren Studien der Licht-Materie Wechselwirkung an für die Nanooptik geeigneten Metallen und damit für eine lichtgetriebene Elektronik der Zukunft. Diese Elektronik würde mit Frequenzen von Licht betrieben. Licht schwingt etwa eine Million Milliarden Mal pro Sekunde, also mit Petahertz-Frequenzen. Ebenso viele Schaltvorgänge wären denkbar, rund 100.000 mehr als heute. Die ultimative Grenze der Datenverarbeitung wäre damit erreicht. Thorsten Naeser

Originalveröffentlichung:

B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, W. A. Okell, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessel, S. A. Trushin, A. M. Azzeer, M. I. Stockman, D. Kim, F. Krausz, P. Hommelhoff, M.F. Kling
Attosecond nanoscale near-field sampling
Nature Communications 31. Mai 2016, 7:11717 doi: 10.1038/ncomms11717 (2016)

Kontakt:

Prof. Dr. Matthias Kling
Ultraschnelle Nanophotonik
Labor für Attosekundenphysik
Department für Physik
Ludwig-Maximilians-Universität München
Am Coulombwall 1
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -234
E-Mail: matthias.kling@mpq.mpg.de

Prof. Dr. Peter Hommelhoff
Lehrstuhl für Laserphysik, Department Physik
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Telefon: +49 (0)9131 / 270 90
E-Mail: peter.hommelhoff@feu.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise