Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekundenblitze aus relativistischen Festkörper-Plasmen

16.12.2008
Forscherteam am MPQ demonstriert die Erzeugung von Attosekunden-Blitzen von bislang unerreichter Intensität

Neue Entwicklungen in der Lasertechnik haben den Weg geebnet, Lichtblitze von Attosekundendauer (1 as=10 hoch -18 sec) zu erzeugen, mit denen sich die ultraschnelle Bewegung der Elektronen in Atomen und Molekülen "einfrieren" lässt.

Die Bandbreite der möglichen Anwendungen ist jedoch durch die geringe Intensität gegenwärtiger Quellen begrenzt. Ein Team von Wissenschaftlern um George Tsakiris (Abteilung Attosekunden- und Hochfeld-Physik, Prof. Ferenc Krausz) hat nun in einem neuartigen Experiment demonstriert, dass sich hochdichte relativistische Festkörper-Plasmen für die effiziente Umwandlung infraroten Laserlichts in harmonische XUV-Strahlung eignen (Nature Physics, Advance Online Publication, 14. Dezember 2008, DOI 10.1038).

Dabei gelang es de Physikern, in einem Zeitraum von weniger als einer Femtosekunde große Mengen an Lichtenergie zu erzeugen. Das Erreichen zeitlicher und räumlicherAuflösung auf subatomaren Skalen hätte weitreichende Folgen für viele Forschungsgebiete, von der Physik über die Chemie, Biologie und Medizin bis hin zu den Informationstechnologien.

Das übliche Verfahren für die Gewinnung ultrakurzer kohärenter Lichtpulse im XUV-Spektralbereich beruht auf der Erzeugung sogenannter "Harmonischer", die beim Gang von Laserlicht durch ein Gas-Target entstehen. Das Laserlicht wird dabei in Strahlung umgewandelt, deren Frequenz ein ganzzahliges Vielfaches der Grundfrequenz ist. Im Gegensatz dazu fokussieren die Physiker bei dem hier beschriebenen Experiment kurze Laserpulse aus dem Titan-Saphir-Laser ATLAS (IR, 800 nm) auf ein Festkörper-Target. Dessen Oberfläche wird dadurch vollständig ionisiert, so dass sich dort ein hochdichtes Plasma herausbildet, in dem die Elektronen mit annähernder Lichtgeschwindigkeit im Laserfeld oszillieren.

Zwei Prozesse führen hier zur Erzeugung Harmonischer: Auf der einen Seite reflektieren die hin- und her schwingenden Elektronen das ankommende Licht. Wenn sie dabei dem Strahl entgegenlaufen, wird das Licht infolge des Doppler-Effekts zu höheren Frequenzen verschoben. Auf der anderen Seite - und das ist der dominante Prozess in diesem Experiment - erzeugen die in die Oberfläche injizierten Elektronen in ihrem Gefolge Plasmawellen. Unter bestimmten Umständen werden diese in elektromagnetische Strahlung bei höheren Harmonischen als der Frequenz des Treiberlasers umgewandelt. Ein geeigneter Filter entfernt die verbliebene IR-Strahlung und selektiert einen Bereich von Harmonischen.

"Es gibt keine Möglichkeit, die zeitliche Struktur der Folge von ausgesandten Attosekunden-Pulsen direkt zu bestimmen", erklärt Dr. George Tsakiris, Leiter des Projekts. "Wir müssen uns daher eines Tricks bedienen: wir lassen zwei Kopien der Pulszüge mit den Atomen in einem Helium-Gasjet in Wechselwirkung treten. Indem wir die Zeitverschiebung zwischen ihnen variieren und die korrespondierende Zahl an Helium-Ionen aufzeichnen, können wir auf die Zeitstruktur der XUV-Strahlung schließen." "Wir haben erstmals gezeigt, dass die in einem Festkörper erzeugten Harmonischen tatsächlich als eine dichte Folge von Attosekunden-Pulsen ausgesandt werden", fügt Rainer Hörlein, Doktorand am Institut, hinzu.

Allgemein gesprochen haben die Physiker erstmals erfolgreich eine alternative Methode zu der Gewinnung von Attosekunden-Pulsen über Harmonische in Edelgas-Targets erprobt. Darüber hinaus haben die Pulse eine um Größenordnungen höhere Intensität als konventionell erzeugte. Und noch ein weiterer Vorteil im Vergleich zu den Gas-Harmonischen wird erwartet. Die neue Methode sollte skalierbar sein, d.h., je höher die Laserintensität, desto kürzer und energiereicher die Attosekunden-Pulse. Attosekunden-Pulse mit einer Intensität, die weit höher ist als dem gegenwärtigen Stand der Technik entspricht, würden eine Reihe interessanter Experimente und sogar Anrege-Abfrage-Experimente mit Attosekunden-Auflösung ermöglichen. [O.M.]

Originalveröffentlichung:
Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Zs. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, and G. D. Tsakiris
"Attosecond phase locking of harmonics emitted from laser-produced plasmas"
Nature Physics, Advance Online Publication, 14. Dezember 2008, DOI 10.1038
Kontakt:
Dr. George Tsakiris
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49(0)89 32905 240
Fax: +49(0)89 32905 200
E-Mail: george.tsakiris@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.:: +49(0)89 32905 213
Fax: +49(0)89 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie