Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekunden-Elektronenkatapult

12.08.2015

Ein Team von Physikern und Chemikern der Universität Rostock, vom Labor für Attosekundenphysik der Ludwig-Maximilians-Universität, des Münchner Max-Planck-Instituts für Quantenoptik (MPQ), sowie der Freien Universität Berlin hat die Wechselwirkung von Licht und winzigen Glasteilchen erforscht.

Die Beziehung zwischen starken Laserpulsen und Glas-Nanoteilchen ist eine ganz spezielle und könnte medizinische Methoden verändern, wie Wissenschaftler aus Rostock, München und Berlin herausfanden. Dieses Zusammenspiel aus Licht und Materie untersuchte ein Team von Physikern und Chemikern aus dem Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig Maximilians Universität München (LMU), dem Institut für Physik der Universität Rostock und der Freien Universität Berlin.


Gerichtete Elektronenbeschleunigung an Glas-Nanokugeln. Ein Femtosekunden-Laserpuls (von links kommend) trifft auf ein Glas-Nanokügelchen. Das Licht schlägt Elektronen (grün) aus dem Atomverbund.

Bild: Martin Dulovits/woogieworks

Die Forscher ließen starke Laserpulse mit Nanoglaskügelchen, die aus mehreren Millionen Atomen bestehen, interagieren. Je nachdem, wie viele Atome in den Nanokügelchen zusammengefasst waren, reagierten die Objekte unterschiedlich, und zwar innerhalb von Attosekunden (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde).

In Abhängigkeit ihrer Größe entstehen an der Oberfläche der Glaskügelchen sogenannte Nahfelder, mit denen Elektronen kontrolliert in verschiedene Richtungen ausgesendet werden konnten. Die Forschungsergebnisse könnten langfristig die Methoden bei der Bildgebung in der Medizin und bei der Krebsbekämpfung erweitern. Die Studie wurde in der jüngsten Ausgabe der Fachzeitschrift Nature Communications veröffentlicht.

Wenn starke Lichtpulse auf Nanoteilchen treffen, dann bleibt in den Atomverbünden nichts wie es war. Sobald die Atome das elektromagnetische Feld des Lichts „spüren“, fangen deren Elektronen an zu schwingen: An der Oberfläche der Kügelchen bilden sich so genannte Nahfelder aus. Das sind elektromagnetische Felder mit Abmessungen im Nanometerbereich, die je nach Wellenlänge des eintreffenden Lichts in einer charakteristischen Weise schwingen.

Die LAP-Physiker um Professor Matthias Kling untersuchten Nanoglaskügelchen aus Siliziumdioxid mit Durchmessern zwischen 50 und 550 Nanometern, die in der Gruppe um Professor Eckart Rühl an der Freien Universität Berlin chemisch hergestellt wurden. Auf die Atomverbünde ließen die Wissenschaftler starke, rund vier Femtosekunden lange Laserpulse treffen (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde).

Sobald die Wellen des elektromagnetischen Lichtfeldes die Nanokugeln erfasst hatten, bildeten sich an deren Oberfläche die Nahfelder aus und begannen zu pulsieren. Je größer die vom Licht getroffenen Kügelchen in dem Experiment im Vergleich zu der eingesetzten Laserwellenlänge von 720 Nanometer waren, desto weiter wanderten die Nahfelder von der Polgegend in Richtung der Rückseite der Teilchen und wirken dabei als Elektronenkatapult.

Das konnten die Forscher beobachten indem sie während des Durchgangs des Laserpulses mit Teilchendetektoren die Flugbahnen von Elektronen aufzeichneten, die genau inmitten der Nahfelder von den Nanokügelchen ausgesandt wurden. „Die Energie und Richtung der emittierten Elektronen ist in diesem Fall eng verknüpft mit der räumlichen und zeitlichen Struktur der Nahfelder.

Die Emission von Elektronen selbst ist eine Art Ping-Pong-Spiel an der Oberfläche der Nanokügelchen, das sich mit einer Genauigkeit im Attosekundenbereich steuern lässt.“, erläutert Professor Thomas Fennel von der Universität Rostock. Er führte mit seinem Team Simulationsrechnungen durch, die die mikroskopischen Vorgänge und deren Ablauf aufdecken konnten.

„Die Elektronen verlassen zunächst die Kugeln, werden dann aber wieder in Richtung der Oberfläche zurückgezogen. Dort prallen sie ab und erhalten aus dem Nahfeld einen finalen, starken Impuls, der sie dann endgültig aus dem Nanoteilchen herauslöst.“, ergänzt Professor Matthias Kling.

Da man mit dieser Technik die Richtung der Aussendung von Teilchen über Laserlicht kontrollieren kann, wäre hierfür eine medizinische Anwendung als Langzeitperspektive denkbar, meinen die Wissenschaftler. „Mit der gerichteten Elektronenbewegung könnte man stark gerichtet Röntgenstrahlung für die Bildgebung produzieren.“, erläutert Professor Eckart Rühl.

Verwendet man genügend starke Laserpulse, wäre es auch denkbar, Ionen, also geladene Atome, aus dem Nanoverbund zu lösen und damit stark gerichtete Ionenstrahlung zur Bekämpfung von Tumoren zu erhalten. Ferner könnte sich herausstellen, dass die Technik neue Perspektiven zur Materialverarbeitung jenseits des Beugungslimits eröffnet – etwa um Nanometer große Bereiche von einer Oberfläche abzutragen.

Es ist nach Einschätzung der Wissenschaftler zudem denkbar, dass die Kombination aus starken Lichtpulsen und Nanoteilchen zu einem wichtigen Baustein für die Elektronik der Zukunft werden könnte. Mit der sogenannten lichtwellengesteuerten Elektronik wäre man in der Lage, Datenübertragung und Speicherung mit der Frequenz von Lichtwellen (rund 1015 Schwingungen pro Sekunde) zu betreiben. Das wäre in etwa 100.000 Mal schneller als es gegenwärtig möglich ist. (Thorsten Naeser)

Originalpublikation:
Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres.
F. Süßmann, L. Seiffert, S. Zherebtsov, V. Mondes, J. Stierle, M. Arbeiter, J. Plenge, P. Rupp, C. Peltz, A. Kessel, S.A. Trushin, B. Ahn, D. Kim, C. Graf., E. Rühl, M.F. Kling, T. Fennel.
Nature Communications, 12. August 2015, DOI: 10.1038/ncomms8944
(http://dx.doi.org/10.1038/ncomms8944)

Weitere Informationen erhalten Sie von:
Prof. Dr. Matthias Kling
Arbeitsgruppe „Ultraschnelle Nanophotonik“, Labor für Attosekundenphysik
Fakultät für Physik, Am Coulombwall 1
85748 Garching, Germany
Tel.: 089 32905 234
E-Mail: matthias.kling@physik.uni-munechen.de

Prof. Dr. Eckart Rühl
Institut für Chemie und Biochemie - Physikalische und Theoretische Chemie
Freie Universität Berlin
Takustr. 3
14195 Berlin
Tel.: 030 / 838-52396
E-Mail: ruehl@zedat.fu-berlin.de

Prof. Dr. Thomas Fennel
Arbeitsgruppe „Theoretische Clusterphysik und Nanophotonik“
Institut für Physik, Universität Rostock
18051 Rostock
Tel.: 0381 498 6815
E-Mail: thomas.fennel@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics