Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekunden-Elektronenkatapult

12.08.2015

Ein Team von Physikern und Chemikern der Universität Rostock, vom Labor für Attosekundenphysik der Ludwig-Maximilians-Universität, des Münchner Max-Planck-Instituts für Quantenoptik (MPQ), sowie der Freien Universität Berlin hat die Wechselwirkung von Licht und winzigen Glasteilchen erforscht.

Die Beziehung zwischen starken Laserpulsen und Glas-Nanoteilchen ist eine ganz spezielle und könnte medizinische Methoden verändern, wie Wissenschaftler aus Rostock, München und Berlin herausfanden. Dieses Zusammenspiel aus Licht und Materie untersuchte ein Team von Physikern und Chemikern aus dem Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig Maximilians Universität München (LMU), dem Institut für Physik der Universität Rostock und der Freien Universität Berlin.


Gerichtete Elektronenbeschleunigung an Glas-Nanokugeln. Ein Femtosekunden-Laserpuls (von links kommend) trifft auf ein Glas-Nanokügelchen. Das Licht schlägt Elektronen (grün) aus dem Atomverbund.

Bild: Martin Dulovits/woogieworks

Die Forscher ließen starke Laserpulse mit Nanoglaskügelchen, die aus mehreren Millionen Atomen bestehen, interagieren. Je nachdem, wie viele Atome in den Nanokügelchen zusammengefasst waren, reagierten die Objekte unterschiedlich, und zwar innerhalb von Attosekunden (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde).

In Abhängigkeit ihrer Größe entstehen an der Oberfläche der Glaskügelchen sogenannte Nahfelder, mit denen Elektronen kontrolliert in verschiedene Richtungen ausgesendet werden konnten. Die Forschungsergebnisse könnten langfristig die Methoden bei der Bildgebung in der Medizin und bei der Krebsbekämpfung erweitern. Die Studie wurde in der jüngsten Ausgabe der Fachzeitschrift Nature Communications veröffentlicht.

Wenn starke Lichtpulse auf Nanoteilchen treffen, dann bleibt in den Atomverbünden nichts wie es war. Sobald die Atome das elektromagnetische Feld des Lichts „spüren“, fangen deren Elektronen an zu schwingen: An der Oberfläche der Kügelchen bilden sich so genannte Nahfelder aus. Das sind elektromagnetische Felder mit Abmessungen im Nanometerbereich, die je nach Wellenlänge des eintreffenden Lichts in einer charakteristischen Weise schwingen.

Die LAP-Physiker um Professor Matthias Kling untersuchten Nanoglaskügelchen aus Siliziumdioxid mit Durchmessern zwischen 50 und 550 Nanometern, die in der Gruppe um Professor Eckart Rühl an der Freien Universität Berlin chemisch hergestellt wurden. Auf die Atomverbünde ließen die Wissenschaftler starke, rund vier Femtosekunden lange Laserpulse treffen (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde).

Sobald die Wellen des elektromagnetischen Lichtfeldes die Nanokugeln erfasst hatten, bildeten sich an deren Oberfläche die Nahfelder aus und begannen zu pulsieren. Je größer die vom Licht getroffenen Kügelchen in dem Experiment im Vergleich zu der eingesetzten Laserwellenlänge von 720 Nanometer waren, desto weiter wanderten die Nahfelder von der Polgegend in Richtung der Rückseite der Teilchen und wirken dabei als Elektronenkatapult.

Das konnten die Forscher beobachten indem sie während des Durchgangs des Laserpulses mit Teilchendetektoren die Flugbahnen von Elektronen aufzeichneten, die genau inmitten der Nahfelder von den Nanokügelchen ausgesandt wurden. „Die Energie und Richtung der emittierten Elektronen ist in diesem Fall eng verknüpft mit der räumlichen und zeitlichen Struktur der Nahfelder.

Die Emission von Elektronen selbst ist eine Art Ping-Pong-Spiel an der Oberfläche der Nanokügelchen, das sich mit einer Genauigkeit im Attosekundenbereich steuern lässt.“, erläutert Professor Thomas Fennel von der Universität Rostock. Er führte mit seinem Team Simulationsrechnungen durch, die die mikroskopischen Vorgänge und deren Ablauf aufdecken konnten.

„Die Elektronen verlassen zunächst die Kugeln, werden dann aber wieder in Richtung der Oberfläche zurückgezogen. Dort prallen sie ab und erhalten aus dem Nahfeld einen finalen, starken Impuls, der sie dann endgültig aus dem Nanoteilchen herauslöst.“, ergänzt Professor Matthias Kling.

Da man mit dieser Technik die Richtung der Aussendung von Teilchen über Laserlicht kontrollieren kann, wäre hierfür eine medizinische Anwendung als Langzeitperspektive denkbar, meinen die Wissenschaftler. „Mit der gerichteten Elektronenbewegung könnte man stark gerichtet Röntgenstrahlung für die Bildgebung produzieren.“, erläutert Professor Eckart Rühl.

Verwendet man genügend starke Laserpulse, wäre es auch denkbar, Ionen, also geladene Atome, aus dem Nanoverbund zu lösen und damit stark gerichtete Ionenstrahlung zur Bekämpfung von Tumoren zu erhalten. Ferner könnte sich herausstellen, dass die Technik neue Perspektiven zur Materialverarbeitung jenseits des Beugungslimits eröffnet – etwa um Nanometer große Bereiche von einer Oberfläche abzutragen.

Es ist nach Einschätzung der Wissenschaftler zudem denkbar, dass die Kombination aus starken Lichtpulsen und Nanoteilchen zu einem wichtigen Baustein für die Elektronik der Zukunft werden könnte. Mit der sogenannten lichtwellengesteuerten Elektronik wäre man in der Lage, Datenübertragung und Speicherung mit der Frequenz von Lichtwellen (rund 1015 Schwingungen pro Sekunde) zu betreiben. Das wäre in etwa 100.000 Mal schneller als es gegenwärtig möglich ist. (Thorsten Naeser)

Originalpublikation:
Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres.
F. Süßmann, L. Seiffert, S. Zherebtsov, V. Mondes, J. Stierle, M. Arbeiter, J. Plenge, P. Rupp, C. Peltz, A. Kessel, S.A. Trushin, B. Ahn, D. Kim, C. Graf., E. Rühl, M.F. Kling, T. Fennel.
Nature Communications, 12. August 2015, DOI: 10.1038/ncomms8944
(http://dx.doi.org/10.1038/ncomms8944)

Weitere Informationen erhalten Sie von:
Prof. Dr. Matthias Kling
Arbeitsgruppe „Ultraschnelle Nanophotonik“, Labor für Attosekundenphysik
Fakultät für Physik, Am Coulombwall 1
85748 Garching, Germany
Tel.: 089 32905 234
E-Mail: matthias.kling@physik.uni-munechen.de

Prof. Dr. Eckart Rühl
Institut für Chemie und Biochemie - Physikalische und Theoretische Chemie
Freie Universität Berlin
Takustr. 3
14195 Berlin
Tel.: 030 / 838-52396
E-Mail: ruehl@zedat.fu-berlin.de

Prof. Dr. Thomas Fennel
Arbeitsgruppe „Theoretische Clusterphysik und Nanophotonik“
Institut für Physik, Universität Rostock
18051 Rostock
Tel.: 0381 498 6815
E-Mail: thomas.fennel@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics