Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomwanderung im Grenzgebiet

26.03.2012
Mit bislang unerreichter Auflösung analysieren Forscher Korngrenzen in Dünnschichtsolarzellen

Dünnschichtsolarzellen werden zukünftig einen großen Anteil am Photovoltaik-Markt haben, davon sind viele Experten überzeugt. Die Zellen aus Kupfer-Indium-Gallium-Selenid oder -Sulfid (CIGSe, CIS) unterscheiden sich in vielen Dingen von der klassischen Siliziumsolarzelle.


In CIS/CIGSe-Solarzellen ist die Dichte an Korngrenzen hoch. HZB-Wissenschaftler konnten mit bislang unerreichter Auflösung Atomlagen unmittelbar an den Grenzflächen analysieren.
Foto: HZB


Aufbau einer CIGSe-Solarzelle
Bild: HZB

So tragen in kristallinen Siliziumsolarzellen Korngrenzen substantiell zum Stromverlust bei. Mit CIGSe-Absorbern werden dagegen Wirkungsgrade von mehr als 20 Prozent erreicht, obwohl die polykristallinen Dünnschicht-Materialien eine hohe Dichte an Korngrenzen aufweisen.

Woran das liegt, ist bislang noch ungeklärt. Forscher des Helmholtz-Zentrum Berlin (HZB) konnten nun erstmals experimentell belegen, wie die Korngrenzen innerhalb einer Kupfer-Indium-Gallium-Selenid-Dünnschichtsolarzelle atomar tatsächlich aussehen.

Diese Einblicke hat das HZB-Team zusammen mit britischen Kollegen vom SuperSTEM (EPSRC National Facility for Aberration Corrected STEM) gewonnen und in der Fachzeitschrift Physical Review Letters publiziert (DOI: 10.1103/PhysRevLett.108.075502).

Mit hochauflösender Mikroskopie haben die Wissenschaftler um Daniel Abou-Ras Regionen an den Korngrenzen identifiziert, die im Vergleich zum Korninneren eine andere chemische Zusammensetzung haben. Das Besondere daran: solche Regionen mit veränderter Komposition sind zum Teil weniger als ein Nanometer breit. „Noch nie hat jemand mit einer solchen Auflösung Informationen über die Struktur und Zusammensetzung von Korngrenzen an CIGSe-Material erhalten“, berichtet Daniel Abou-Ras vom Institut für Technologie des HZB.

„Wir können erkennen, dass sich in den Atomlagen direkt an den Korn-grenzen Atome umlagern. Zum Beispiel diffundieren Kupfer-Atome weg, dafür nehmen Indium-Atome deren Plätze im Kristallgitter ein, und umgekehrt“, erläutert Abou-Ras. Ebenso können Selen-Atome verschwinden und durch Sauerstoffatome ersetzt werden, die als Verunreinigung aus dem Glassubstrat in die Kupfer-Indium-Gallium-Selenid-Schicht diffundieren.

„Eine solche atomare Rekonstruktion an der Korngrenze wird seit einigen Jahren kontrovers diskutiert. Jetzt konnten wir diese erstmals mit Auflösungen im Subnanometerbereich experimentell belegen“, sagt Daniel Abou-Ras.

Die neuen Erkenntnisse wollen die Forscher nun nutzen, um aussagekräftige Bauelementsimulationen an Solarzellen durchzuführen. „Dies alles ist immer noch Grundlagenforschung“, so der Physiker. „Aber sie bringt uns weiter, um die Funktionsweise von Kupfer-Indium-Gallium-Selenid-Solarzellen besser zu verstehen.“

Originalarbeit:
„Direct insight into grain boundary reconstruction in polycrystalline Cu(In,Ga)Se2 with atomic resolution.“ http://dx.doi.org/10.1103/PhysRevLett.108.075502.

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen