Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomuhrenvergleich über die Datenautobahn

27.04.2012
Glasfaserkabel könnten in Zukunft alle optischen Atomuhren Europas verbinden – ein großer Nutzen für Anwender optischer Frequenzen in Forschung und Industrie.
(Gemeinsame Presseinformation der PTB und des Max-Planck-Instituts für Quantenphysik, MPQ)

Optische Atomuhren messen die Zeit mit überragender Genauigkeit. Doch erst die Möglichkeit, sie mit anderen Uhren zu vergleichen, macht sie einsatzbereit für hochpräzise Tests fundamentaler Theorien, von der Kosmologie bis hin zur Quantenphysik. Ein Uhrenvergleich, d. h. ein Vergleich der optischen Frequenzen, gestaltet sich bislang jedoch sehr schwierig, denn die weltweit wenigen Exemplare sind sehr komplex aufgebaut und lassen sich nur mit größtem Aufwand transportieren.

Atomuhrenvergleich über die Datenautobahn (künstlerische Darstellung)
(Abb.: MPQ - woogie-works Wien)

Ein Team von Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig und der Abteilung Laserspektroskopie am Max-Planck-Institut für Quantenoptik (MPQ) in Garching hat jetzt gezeigt, dass sich optische Frequenzen mit hoher Stabilität über herkömmliche Telekommunikations-Glasfaserstrecken übertragen lassen, selbst über ein 920 Kilometer langes, unterirdisch verlegtes Kabel, das Labore an beiden Instituten verbindet (Science, 27. April 2012).

Damit besteht jetzt prinzipiell die Möglichkeit, optische Uhren über große Distanzen miteinander zu vergleichen bzw. ihre Genauigkeit auch in weit entfernten Laboren für Präzisionsmessungen zu nutzen. Profitieren wird davon zunächst die Grundlagenforschung, etwa bei der präzisen Bestimmung der Naturkonstanten, der Überprüfung der Allgemeinen Relativitätstheorie von Albert Einstein oder von Vorhersagen der Quantenelektrodynamik.

In einer Atomuhr sind Zeiteinheiten über die Frequenz der Strahlung definiert, die ein Atom beim Übergang zwischen zwei Energieniveaus aussendet. Die Zeiteinheit „Sekunde“ bezieht sich auf die vom Cäsium-Isotop 133 ausgesendeten Mikrowellen, d. h. der Sekundenzeiger wird nach 9 192 631 770 Schwingungen um eine Einheit weiter gesetzt. Die Realisierung und Verbreitung der Sekunde über die PTB ist in Deutschland gesetzlich festgelegt. Optische Atomuhren verwenden eine etwa 100 000-mal höhere Frequenz und erlauben daher eine weit feinere Zeitunterteilung. Atomuhren der neusten Generation gehen bereits so genau, dass sie erst in der 18. Dezimalstelle voneinander abweichen – bzw. um eine Sekunde in einem Zeitraum, der dem Alter des Universums entspricht.

Doch wie gut lassen sich optische Frequenzen über weite Entfernungen übertragen? Herkömmliche Verfahren mithilfe von Satelliten erreichen hier eine Genauigkeit von 15 Dezimalstellen. Das ist gut genug für Signale im Mikrowellenbereich, aber zu grob, um das Potenzial optischer Atomuhren auszuschöpfen. Die MPQ/PTB-Forscher haben daher in den letzten Jahren untersucht, wie sich optische Frequenzen in Glasfaserkabeln übertragen lassen. Unterstützung erhielten sie dabei von dem Exzellenzcluster QUEST der Leibniz Universität Hannover, von der European Space Agency (ESA), dem Deutschen Forschungsnetz (DFN) und GasLine, einer Telekommunikationsnetzgesellschaft deutscher Gasversorgungsunternehmen.

In dem Projekt speisen die Wissenschaftler das Licht eines hochstabilen Lasers mit einer Wellenlänge von etwa 1,5 Mikrometern (nahes Infrarot) in ein Glasfaserkabel ein, das zwischen der PTB in Braunschweig und dem MPQ in Garching unterirdisch verlegt ist. Es handelt sich dabei um ein auch in der Telekommunikation übliches Kabel, mit einer relativ geringen Dämpfung für Strahlung im nahen Infrarot. Um ein Signal jedoch über eine so weite Strecke ohne nennenswerte Leistungseinbuße zu übertragen, muss es immer wieder aufgefrischt werden. Dazu wurden neuartige optische Verstärkereinheiten entwickelt und über die gesamte Glasfaserstrecke verteilt aufgebaut.

Ein weiteres Problem sind Verfälschungen der ursprünglichen Laserfrequenz, hervorgerufen durch mechanische, akustische und thermische Störungen, die z. B. aufgrund von Temperaturschwankungen, Straßenverkehr oder Bauarbeiten entstehen. Mit neuen Verfahren können diese Störungen so gut erfasst, „ausgeregelt“ und kompensiert werden, dass sich die ganze 920 Kilometer lange Glasfaserverbindung zwischen Braunschweig und Garching optisch um weniger als einen Atomdurchmesser in der Sekunde ändert. Die dem Anwender im Partnerlabor zur Verfügung stehende Frequenz von 194 353 Gigahertz weicht deshalb nur um weniger als ein zehntausendstel Hertz von der eingespeisten Frequenz ab. Die Probe aufs Exempel machten Wissenschaftler der Abteilung Laserspektroskopie: sie nutzten das Signal der primären Cäsiumuhr der PTB für die Spektroskopie von Wasserstoff am MPQ. Dieses wurde über einen Frequenzkamm mit der optischen Phase des eingespeisten Lasers verglichen. Dabei wurde eine weit höhere Genauigkeit erreicht, als mit Satelliten-gestützter Übertragung möglich gewesen wäre.

Optische Frequenzen können also mit einer Qualität verteilt werden, wie sie bislang nur lokal an Metrologieinstituten zur Verfügung stand. Die Verwendung der Glasfaserinfrastruktur, die z.B. die nationalen Forschungsnetze schon heute bereitstellen, wird es ermöglichen, optische Atomuhren in Zukunft europaweit zu vernetzen. So wie es heute zum Stand der Technik gehört, dass herkömmliche Uhren und Wecker per Funk die „richtige Zeit“ von der PTB über den Langwellensender DCF77 empfangen, wird die Verbreitung einer optischen Referenz per Glasfaser zur Bestimmung der Wellenlänge bzw. Frequenz optischer Strahlung eine breite Anwendung in Forschung und Industrie finden.
es/ptb

Originalveröffentlichung:
K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T.W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz:
A 920 km Optical Fiber Link for Frequency Metrology at the 19th Decimal Place.
Science, 27. April 2012

Kontakt:
Dr. Harald Schnatz, Fachbereich 4.3 Quantenoptik und Längeneinheit, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Tel.: (0531) 592-4300, E-Mail: harald.schnatz@ptb.de

Dr. Gesine Grosche, Fachbereich 4.3 Quantenoptik und Längeneinheit, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig
Tel.: (0531) 592 -4318, E-Mail: gesine.grosche@ptb.de

Katharina Predehl, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Tel.: (089) 32905-295,E-Mail: katharina.predehl@mpq.mpg.de

Dr. Ronald Holzwarth, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Tel.: (089) 32905-262, E-Mail: ronald.holzwarth@mpq.mpg.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

10. Cottbuser Medienrechtstage zu »Fake News, Hate Speech und Whistleblowing«

18.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parasitenflirt: Molekulare Kamera zeigt Paarungszustand von Bilharziose-Erregern in 3D

19.09.2017 | Biowissenschaften Chemie

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungsnachrichten

Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie

19.09.2017 | Förderungen Preise