Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomuhrenvergleich über die Datenautobahn

27.04.2012
Glasfaserkabel könnten in Zukunft alle optischen Atomuhren Europas verbinden – ein großer Nutzen für Anwender optischer Frequenzen in Forschung und Industrie.
(Gemeinsame Presseinformation der PTB und des Max-Planck-Instituts für Quantenphysik, MPQ)

Optische Atomuhren messen die Zeit mit überragender Genauigkeit. Doch erst die Möglichkeit, sie mit anderen Uhren zu vergleichen, macht sie einsatzbereit für hochpräzise Tests fundamentaler Theorien, von der Kosmologie bis hin zur Quantenphysik. Ein Uhrenvergleich, d. h. ein Vergleich der optischen Frequenzen, gestaltet sich bislang jedoch sehr schwierig, denn die weltweit wenigen Exemplare sind sehr komplex aufgebaut und lassen sich nur mit größtem Aufwand transportieren.

Atomuhrenvergleich über die Datenautobahn (künstlerische Darstellung)
(Abb.: MPQ - woogie-works Wien)

Ein Team von Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig und der Abteilung Laserspektroskopie am Max-Planck-Institut für Quantenoptik (MPQ) in Garching hat jetzt gezeigt, dass sich optische Frequenzen mit hoher Stabilität über herkömmliche Telekommunikations-Glasfaserstrecken übertragen lassen, selbst über ein 920 Kilometer langes, unterirdisch verlegtes Kabel, das Labore an beiden Instituten verbindet (Science, 27. April 2012).

Damit besteht jetzt prinzipiell die Möglichkeit, optische Uhren über große Distanzen miteinander zu vergleichen bzw. ihre Genauigkeit auch in weit entfernten Laboren für Präzisionsmessungen zu nutzen. Profitieren wird davon zunächst die Grundlagenforschung, etwa bei der präzisen Bestimmung der Naturkonstanten, der Überprüfung der Allgemeinen Relativitätstheorie von Albert Einstein oder von Vorhersagen der Quantenelektrodynamik.

In einer Atomuhr sind Zeiteinheiten über die Frequenz der Strahlung definiert, die ein Atom beim Übergang zwischen zwei Energieniveaus aussendet. Die Zeiteinheit „Sekunde“ bezieht sich auf die vom Cäsium-Isotop 133 ausgesendeten Mikrowellen, d. h. der Sekundenzeiger wird nach 9 192 631 770 Schwingungen um eine Einheit weiter gesetzt. Die Realisierung und Verbreitung der Sekunde über die PTB ist in Deutschland gesetzlich festgelegt. Optische Atomuhren verwenden eine etwa 100 000-mal höhere Frequenz und erlauben daher eine weit feinere Zeitunterteilung. Atomuhren der neusten Generation gehen bereits so genau, dass sie erst in der 18. Dezimalstelle voneinander abweichen – bzw. um eine Sekunde in einem Zeitraum, der dem Alter des Universums entspricht.

Doch wie gut lassen sich optische Frequenzen über weite Entfernungen übertragen? Herkömmliche Verfahren mithilfe von Satelliten erreichen hier eine Genauigkeit von 15 Dezimalstellen. Das ist gut genug für Signale im Mikrowellenbereich, aber zu grob, um das Potenzial optischer Atomuhren auszuschöpfen. Die MPQ/PTB-Forscher haben daher in den letzten Jahren untersucht, wie sich optische Frequenzen in Glasfaserkabeln übertragen lassen. Unterstützung erhielten sie dabei von dem Exzellenzcluster QUEST der Leibniz Universität Hannover, von der European Space Agency (ESA), dem Deutschen Forschungsnetz (DFN) und GasLine, einer Telekommunikationsnetzgesellschaft deutscher Gasversorgungsunternehmen.

In dem Projekt speisen die Wissenschaftler das Licht eines hochstabilen Lasers mit einer Wellenlänge von etwa 1,5 Mikrometern (nahes Infrarot) in ein Glasfaserkabel ein, das zwischen der PTB in Braunschweig und dem MPQ in Garching unterirdisch verlegt ist. Es handelt sich dabei um ein auch in der Telekommunikation übliches Kabel, mit einer relativ geringen Dämpfung für Strahlung im nahen Infrarot. Um ein Signal jedoch über eine so weite Strecke ohne nennenswerte Leistungseinbuße zu übertragen, muss es immer wieder aufgefrischt werden. Dazu wurden neuartige optische Verstärkereinheiten entwickelt und über die gesamte Glasfaserstrecke verteilt aufgebaut.

Ein weiteres Problem sind Verfälschungen der ursprünglichen Laserfrequenz, hervorgerufen durch mechanische, akustische und thermische Störungen, die z. B. aufgrund von Temperaturschwankungen, Straßenverkehr oder Bauarbeiten entstehen. Mit neuen Verfahren können diese Störungen so gut erfasst, „ausgeregelt“ und kompensiert werden, dass sich die ganze 920 Kilometer lange Glasfaserverbindung zwischen Braunschweig und Garching optisch um weniger als einen Atomdurchmesser in der Sekunde ändert. Die dem Anwender im Partnerlabor zur Verfügung stehende Frequenz von 194 353 Gigahertz weicht deshalb nur um weniger als ein zehntausendstel Hertz von der eingespeisten Frequenz ab. Die Probe aufs Exempel machten Wissenschaftler der Abteilung Laserspektroskopie: sie nutzten das Signal der primären Cäsiumuhr der PTB für die Spektroskopie von Wasserstoff am MPQ. Dieses wurde über einen Frequenzkamm mit der optischen Phase des eingespeisten Lasers verglichen. Dabei wurde eine weit höhere Genauigkeit erreicht, als mit Satelliten-gestützter Übertragung möglich gewesen wäre.

Optische Frequenzen können also mit einer Qualität verteilt werden, wie sie bislang nur lokal an Metrologieinstituten zur Verfügung stand. Die Verwendung der Glasfaserinfrastruktur, die z.B. die nationalen Forschungsnetze schon heute bereitstellen, wird es ermöglichen, optische Atomuhren in Zukunft europaweit zu vernetzen. So wie es heute zum Stand der Technik gehört, dass herkömmliche Uhren und Wecker per Funk die „richtige Zeit“ von der PTB über den Langwellensender DCF77 empfangen, wird die Verbreitung einer optischen Referenz per Glasfaser zur Bestimmung der Wellenlänge bzw. Frequenz optischer Strahlung eine breite Anwendung in Forschung und Industrie finden.
es/ptb

Originalveröffentlichung:
K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T.W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz:
A 920 km Optical Fiber Link for Frequency Metrology at the 19th Decimal Place.
Science, 27. April 2012

Kontakt:
Dr. Harald Schnatz, Fachbereich 4.3 Quantenoptik und Längeneinheit, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Tel.: (0531) 592-4300, E-Mail: harald.schnatz@ptb.de

Dr. Gesine Grosche, Fachbereich 4.3 Quantenoptik und Längeneinheit, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig
Tel.: (0531) 592 -4318, E-Mail: gesine.grosche@ptb.de

Katharina Predehl, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Tel.: (089) 32905-295,E-Mail: katharina.predehl@mpq.mpg.de

Dr. Ronald Holzwarth, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Tel.: (089) 32905-262, E-Mail: ronald.holzwarth@mpq.mpg.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik