Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomuhrenvergleich über die Datenautobahn

27.04.2012
Glasfaserkabel könnten in Zukunft alle optischen Atomuhren Europas verbinden – ein großer Nutzen für Anwender optischer Frequenzen in Forschung und Industrie.
(Gemeinsame Presseinformation der PTB und des Max-Planck-Instituts für Quantenphysik, MPQ)

Optische Atomuhren messen die Zeit mit überragender Genauigkeit. Doch erst die Möglichkeit, sie mit anderen Uhren zu vergleichen, macht sie einsatzbereit für hochpräzise Tests fundamentaler Theorien, von der Kosmologie bis hin zur Quantenphysik. Ein Uhrenvergleich, d. h. ein Vergleich der optischen Frequenzen, gestaltet sich bislang jedoch sehr schwierig, denn die weltweit wenigen Exemplare sind sehr komplex aufgebaut und lassen sich nur mit größtem Aufwand transportieren.

Atomuhrenvergleich über die Datenautobahn (künstlerische Darstellung)
(Abb.: MPQ - woogie-works Wien)

Ein Team von Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig und der Abteilung Laserspektroskopie am Max-Planck-Institut für Quantenoptik (MPQ) in Garching hat jetzt gezeigt, dass sich optische Frequenzen mit hoher Stabilität über herkömmliche Telekommunikations-Glasfaserstrecken übertragen lassen, selbst über ein 920 Kilometer langes, unterirdisch verlegtes Kabel, das Labore an beiden Instituten verbindet (Science, 27. April 2012).

Damit besteht jetzt prinzipiell die Möglichkeit, optische Uhren über große Distanzen miteinander zu vergleichen bzw. ihre Genauigkeit auch in weit entfernten Laboren für Präzisionsmessungen zu nutzen. Profitieren wird davon zunächst die Grundlagenforschung, etwa bei der präzisen Bestimmung der Naturkonstanten, der Überprüfung der Allgemeinen Relativitätstheorie von Albert Einstein oder von Vorhersagen der Quantenelektrodynamik.

In einer Atomuhr sind Zeiteinheiten über die Frequenz der Strahlung definiert, die ein Atom beim Übergang zwischen zwei Energieniveaus aussendet. Die Zeiteinheit „Sekunde“ bezieht sich auf die vom Cäsium-Isotop 133 ausgesendeten Mikrowellen, d. h. der Sekundenzeiger wird nach 9 192 631 770 Schwingungen um eine Einheit weiter gesetzt. Die Realisierung und Verbreitung der Sekunde über die PTB ist in Deutschland gesetzlich festgelegt. Optische Atomuhren verwenden eine etwa 100 000-mal höhere Frequenz und erlauben daher eine weit feinere Zeitunterteilung. Atomuhren der neusten Generation gehen bereits so genau, dass sie erst in der 18. Dezimalstelle voneinander abweichen – bzw. um eine Sekunde in einem Zeitraum, der dem Alter des Universums entspricht.

Doch wie gut lassen sich optische Frequenzen über weite Entfernungen übertragen? Herkömmliche Verfahren mithilfe von Satelliten erreichen hier eine Genauigkeit von 15 Dezimalstellen. Das ist gut genug für Signale im Mikrowellenbereich, aber zu grob, um das Potenzial optischer Atomuhren auszuschöpfen. Die MPQ/PTB-Forscher haben daher in den letzten Jahren untersucht, wie sich optische Frequenzen in Glasfaserkabeln übertragen lassen. Unterstützung erhielten sie dabei von dem Exzellenzcluster QUEST der Leibniz Universität Hannover, von der European Space Agency (ESA), dem Deutschen Forschungsnetz (DFN) und GasLine, einer Telekommunikationsnetzgesellschaft deutscher Gasversorgungsunternehmen.

In dem Projekt speisen die Wissenschaftler das Licht eines hochstabilen Lasers mit einer Wellenlänge von etwa 1,5 Mikrometern (nahes Infrarot) in ein Glasfaserkabel ein, das zwischen der PTB in Braunschweig und dem MPQ in Garching unterirdisch verlegt ist. Es handelt sich dabei um ein auch in der Telekommunikation übliches Kabel, mit einer relativ geringen Dämpfung für Strahlung im nahen Infrarot. Um ein Signal jedoch über eine so weite Strecke ohne nennenswerte Leistungseinbuße zu übertragen, muss es immer wieder aufgefrischt werden. Dazu wurden neuartige optische Verstärkereinheiten entwickelt und über die gesamte Glasfaserstrecke verteilt aufgebaut.

Ein weiteres Problem sind Verfälschungen der ursprünglichen Laserfrequenz, hervorgerufen durch mechanische, akustische und thermische Störungen, die z. B. aufgrund von Temperaturschwankungen, Straßenverkehr oder Bauarbeiten entstehen. Mit neuen Verfahren können diese Störungen so gut erfasst, „ausgeregelt“ und kompensiert werden, dass sich die ganze 920 Kilometer lange Glasfaserverbindung zwischen Braunschweig und Garching optisch um weniger als einen Atomdurchmesser in der Sekunde ändert. Die dem Anwender im Partnerlabor zur Verfügung stehende Frequenz von 194 353 Gigahertz weicht deshalb nur um weniger als ein zehntausendstel Hertz von der eingespeisten Frequenz ab. Die Probe aufs Exempel machten Wissenschaftler der Abteilung Laserspektroskopie: sie nutzten das Signal der primären Cäsiumuhr der PTB für die Spektroskopie von Wasserstoff am MPQ. Dieses wurde über einen Frequenzkamm mit der optischen Phase des eingespeisten Lasers verglichen. Dabei wurde eine weit höhere Genauigkeit erreicht, als mit Satelliten-gestützter Übertragung möglich gewesen wäre.

Optische Frequenzen können also mit einer Qualität verteilt werden, wie sie bislang nur lokal an Metrologieinstituten zur Verfügung stand. Die Verwendung der Glasfaserinfrastruktur, die z.B. die nationalen Forschungsnetze schon heute bereitstellen, wird es ermöglichen, optische Atomuhren in Zukunft europaweit zu vernetzen. So wie es heute zum Stand der Technik gehört, dass herkömmliche Uhren und Wecker per Funk die „richtige Zeit“ von der PTB über den Langwellensender DCF77 empfangen, wird die Verbreitung einer optischen Referenz per Glasfaser zur Bestimmung der Wellenlänge bzw. Frequenz optischer Strahlung eine breite Anwendung in Forschung und Industrie finden.
es/ptb

Originalveröffentlichung:
K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T.W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz:
A 920 km Optical Fiber Link for Frequency Metrology at the 19th Decimal Place.
Science, 27. April 2012

Kontakt:
Dr. Harald Schnatz, Fachbereich 4.3 Quantenoptik und Längeneinheit, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Tel.: (0531) 592-4300, E-Mail: harald.schnatz@ptb.de

Dr. Gesine Grosche, Fachbereich 4.3 Quantenoptik und Längeneinheit, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig
Tel.: (0531) 592 -4318, E-Mail: gesine.grosche@ptb.de

Katharina Predehl, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Tel.: (089) 32905-295,E-Mail: katharina.predehl@mpq.mpg.de

Dr. Ronald Holzwarth, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Tel.: (089) 32905-262, E-Mail: ronald.holzwarth@mpq.mpg.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ferngesteuerte Mikroschwimmer: Jülicher Physiker simulieren Bewegungen von Bakterien an Oberflächen
22.05.2015 | Forschungszentrum Jülich

nachricht Hochleistungsmikroskopie für Membranrezeptoren
22.05.2015 | Universitätsklinikum Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kieler Forschende bauen die kleinsten Maschinen der Welt

Die DFG stellt Millionenförderung für die Entwicklung neuartiger Medikamente und Materialien an der Christian-Albrechts-Universität zu Kiel (CAU) bereit.

Großer Jubel an der Christian-Albrechts-Universität zu Kiel (CAU): Wie die Deutsche Forschungsgemeinschaft (DFG) heute (Donnerstag, 21. Mai) bekannt gab,...

Im Focus: Basler Physiker entwickeln Methode zur effizienten Signalübertragung aus Nanobauteilen

Physiker haben eine innovative Methode entwickelt, die den effizienten Einsatz von Nanobauteilen in elektronische Schaltkreisen ermöglichen könnte. Sie entwickelten dazu eine Anordnung, bei der ein Nanobauteil mit zwei elektrischen Leitern verbunden ist. Diese bewirken eine hocheffiziente Auskopplung des elektrischen Signals. Die Wissenschaftler vom Departement Physik und dem Swiss Nanoscience Institute der Universität Basel haben ihre Ergebnisse zusammen mit Kollegen der ETH Zürich in der Fachzeitschrift «Nature Communications» publiziert.

Elektronische Bauteile werden immer kleiner. In Forschungslabors werden bereits Bauelemente von wenigen Nanometern hergestellt, was ungefähr der Grösse von...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: Phagen übertragen Antibiotikaresistenzen auf Bakterien – Nachweis auf Geflügelfleisch

Bakterien entwickeln immer häufiger Resistenzen gegenüber Antibiotika. Es gibt unterschiedliche Erklärungen dafür, wie diese Resistenzen in die Bakterien gelangen. Forschende der Vetmeduni Vienna fanden sogenannte Phagen auf Geflügelfleisch, die Antibiotikaresistenzen auf Bakterien übertragen können. Phagen sind Viren, die ausschließlich Bakterien infizieren können. Für Menschen sind sie unschädlich. Phagen könnten laut Studie jedoch zur Verbreitung von Antibiotikaresistenzen beitragen. Die Erkenntnisse sind nicht nur für die Lebensmittelproduktion sondern auch für die Medizin von Bedeutung. Die Studie wurde in der Fachzeitschrift Applied and Environmental Microbiology veröffentlicht.

Antibiotikaresistente Bakterien stellen weltweit ein bedeutendes Gesundheitsrisiko dar. Gängige Antibiotika sind bei der Behandlung von Infektionskrankheiten...

Im Focus: Die schreckliche Schönheit der Medusa

Astronomen haben mit dem Very Large Telescope der ESO in Chile das bisher detailgetreueste Bild vom Medusa-Nebel eingefangen, das je aufgenommen wurde. Als der Stern im Herzen dieses Nebels altersschwach wurde, hat er seine äußeren Schichten abgestoßen, aus denen sich diese farbenfrohe Wolke bildete. Das Bild lässt erahnen, welches endgültige Schicksal die Sonne einmal ereilen wird: Irgendwann wird aus ihr ebenfalls ein Objekt dieser Art werden.

Dieser wunderschöne Planetarische Nebel ist nach einer schrecklichen Kreatur aus der griechischen Mythologie benannt – der Gorgone Medusa. Er trägt auch die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

TU Darmstadt: Gipfel der Verschlüsselung - CROSSING-Konferenz am 1. und 2. Juni in Darmstadt

22.05.2015 | Veranstaltungen

Internationale neurowissenschaftliche Tagung

22.05.2015 | Veranstaltungen

Biokohle-Forscher tagen in Potsdam

21.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanogefäß mit einer Perle aus Gold

22.05.2015 | Biowissenschaften Chemie

Ferngesteuerte Mikroschwimmer: Jülicher Physiker simulieren Bewegungen von Bakterien an Oberflächen

22.05.2015 | Physik Astronomie

Was Chromosomen im Innersten zusammenhält

22.05.2015 | Biowissenschaften Chemie