Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomuhrenvergleich über die Datenautobahn

27.04.2012
Glasfaserkabel könnten in Zukunft alle optischen Atomuhren Europas verbinden – ein großer Nutzen für Anwender optischer Frequenzen in Forschung und Industrie.
(Gemeinsame Presseinformation der PTB und des Max-Planck-Instituts für Quantenphysik, MPQ)

Optische Atomuhren messen die Zeit mit überragender Genauigkeit. Doch erst die Möglichkeit, sie mit anderen Uhren zu vergleichen, macht sie einsatzbereit für hochpräzise Tests fundamentaler Theorien, von der Kosmologie bis hin zur Quantenphysik. Ein Uhrenvergleich, d. h. ein Vergleich der optischen Frequenzen, gestaltet sich bislang jedoch sehr schwierig, denn die weltweit wenigen Exemplare sind sehr komplex aufgebaut und lassen sich nur mit größtem Aufwand transportieren.

Atomuhrenvergleich über die Datenautobahn (künstlerische Darstellung)
(Abb.: MPQ - woogie-works Wien)

Ein Team von Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig und der Abteilung Laserspektroskopie am Max-Planck-Institut für Quantenoptik (MPQ) in Garching hat jetzt gezeigt, dass sich optische Frequenzen mit hoher Stabilität über herkömmliche Telekommunikations-Glasfaserstrecken übertragen lassen, selbst über ein 920 Kilometer langes, unterirdisch verlegtes Kabel, das Labore an beiden Instituten verbindet (Science, 27. April 2012).

Damit besteht jetzt prinzipiell die Möglichkeit, optische Uhren über große Distanzen miteinander zu vergleichen bzw. ihre Genauigkeit auch in weit entfernten Laboren für Präzisionsmessungen zu nutzen. Profitieren wird davon zunächst die Grundlagenforschung, etwa bei der präzisen Bestimmung der Naturkonstanten, der Überprüfung der Allgemeinen Relativitätstheorie von Albert Einstein oder von Vorhersagen der Quantenelektrodynamik.

In einer Atomuhr sind Zeiteinheiten über die Frequenz der Strahlung definiert, die ein Atom beim Übergang zwischen zwei Energieniveaus aussendet. Die Zeiteinheit „Sekunde“ bezieht sich auf die vom Cäsium-Isotop 133 ausgesendeten Mikrowellen, d. h. der Sekundenzeiger wird nach 9 192 631 770 Schwingungen um eine Einheit weiter gesetzt. Die Realisierung und Verbreitung der Sekunde über die PTB ist in Deutschland gesetzlich festgelegt. Optische Atomuhren verwenden eine etwa 100 000-mal höhere Frequenz und erlauben daher eine weit feinere Zeitunterteilung. Atomuhren der neusten Generation gehen bereits so genau, dass sie erst in der 18. Dezimalstelle voneinander abweichen – bzw. um eine Sekunde in einem Zeitraum, der dem Alter des Universums entspricht.

Doch wie gut lassen sich optische Frequenzen über weite Entfernungen übertragen? Herkömmliche Verfahren mithilfe von Satelliten erreichen hier eine Genauigkeit von 15 Dezimalstellen. Das ist gut genug für Signale im Mikrowellenbereich, aber zu grob, um das Potenzial optischer Atomuhren auszuschöpfen. Die MPQ/PTB-Forscher haben daher in den letzten Jahren untersucht, wie sich optische Frequenzen in Glasfaserkabeln übertragen lassen. Unterstützung erhielten sie dabei von dem Exzellenzcluster QUEST der Leibniz Universität Hannover, von der European Space Agency (ESA), dem Deutschen Forschungsnetz (DFN) und GasLine, einer Telekommunikationsnetzgesellschaft deutscher Gasversorgungsunternehmen.

In dem Projekt speisen die Wissenschaftler das Licht eines hochstabilen Lasers mit einer Wellenlänge von etwa 1,5 Mikrometern (nahes Infrarot) in ein Glasfaserkabel ein, das zwischen der PTB in Braunschweig und dem MPQ in Garching unterirdisch verlegt ist. Es handelt sich dabei um ein auch in der Telekommunikation übliches Kabel, mit einer relativ geringen Dämpfung für Strahlung im nahen Infrarot. Um ein Signal jedoch über eine so weite Strecke ohne nennenswerte Leistungseinbuße zu übertragen, muss es immer wieder aufgefrischt werden. Dazu wurden neuartige optische Verstärkereinheiten entwickelt und über die gesamte Glasfaserstrecke verteilt aufgebaut.

Ein weiteres Problem sind Verfälschungen der ursprünglichen Laserfrequenz, hervorgerufen durch mechanische, akustische und thermische Störungen, die z. B. aufgrund von Temperaturschwankungen, Straßenverkehr oder Bauarbeiten entstehen. Mit neuen Verfahren können diese Störungen so gut erfasst, „ausgeregelt“ und kompensiert werden, dass sich die ganze 920 Kilometer lange Glasfaserverbindung zwischen Braunschweig und Garching optisch um weniger als einen Atomdurchmesser in der Sekunde ändert. Die dem Anwender im Partnerlabor zur Verfügung stehende Frequenz von 194 353 Gigahertz weicht deshalb nur um weniger als ein zehntausendstel Hertz von der eingespeisten Frequenz ab. Die Probe aufs Exempel machten Wissenschaftler der Abteilung Laserspektroskopie: sie nutzten das Signal der primären Cäsiumuhr der PTB für die Spektroskopie von Wasserstoff am MPQ. Dieses wurde über einen Frequenzkamm mit der optischen Phase des eingespeisten Lasers verglichen. Dabei wurde eine weit höhere Genauigkeit erreicht, als mit Satelliten-gestützter Übertragung möglich gewesen wäre.

Optische Frequenzen können also mit einer Qualität verteilt werden, wie sie bislang nur lokal an Metrologieinstituten zur Verfügung stand. Die Verwendung der Glasfaserinfrastruktur, die z.B. die nationalen Forschungsnetze schon heute bereitstellen, wird es ermöglichen, optische Atomuhren in Zukunft europaweit zu vernetzen. So wie es heute zum Stand der Technik gehört, dass herkömmliche Uhren und Wecker per Funk die „richtige Zeit“ von der PTB über den Langwellensender DCF77 empfangen, wird die Verbreitung einer optischen Referenz per Glasfaser zur Bestimmung der Wellenlänge bzw. Frequenz optischer Strahlung eine breite Anwendung in Forschung und Industrie finden.
es/ptb

Originalveröffentlichung:
K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T.W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz:
A 920 km Optical Fiber Link for Frequency Metrology at the 19th Decimal Place.
Science, 27. April 2012

Kontakt:
Dr. Harald Schnatz, Fachbereich 4.3 Quantenoptik und Längeneinheit, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Tel.: (0531) 592-4300, E-Mail: harald.schnatz@ptb.de

Dr. Gesine Grosche, Fachbereich 4.3 Quantenoptik und Längeneinheit, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig
Tel.: (0531) 592 -4318, E-Mail: gesine.grosche@ptb.de

Katharina Predehl, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Tel.: (089) 32905-295,E-Mail: katharina.predehl@mpq.mpg.de

Dr. Ronald Holzwarth, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Tel.: (089) 32905-262, E-Mail: ronald.holzwarth@mpq.mpg.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics