Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Atomuhren das Erdinnere vermessen

12.11.2012
Ultrapräzise portable Atomuhren stehen kurz vor dem Durchbruch. Bald kann mit Hilfe von Atomuhren der neuesten Generation das Erdinnere kartiert werden.

Das zeigt ein internationales Team, darunter Astrophysiker der Universität Zürich.


Voraussichtlich bereits 2014 soll mit ACES, Atomic Clock Ensemble in Space, ein erster hochpräziser Atomuhr-Prototyp, in das Raumlabor Columbus der Internationalen Raumstation ISS gebracht werden.

Bild: European Space Agency ESA, D. Ducros

Erzlagerstätten oder verborgene Wasservorkommen im Innern der Erde von der Oberfläche aus identifizieren? Ultrapräzise portable Atomuhren werden mithelfen, dass dies in den nächsten Jahren verwirklicht wird. Davon ist ein internationales Team um die Astrophysiker Philippe Jetzer und Ruxandra Bondarescu von der Universität Zürich überzeugt. Wie die Wissenschaftler zeigen, haben diese Atomuhren jetzt das erforderliche Mass an Präzision erreicht, um für geophysikalische Vermessungszwecke eingesetzt werden zu können. Neben der direkten Messung des Geoids – der wahren physikalischen Form der Erde – können solche Atomuhren in Zukunft für die Erkundung des Erdinnern eingesetzt werden.

Geoid bestimmen mit Hilfe der Relativitätstheorie

Heute kann das Geoid der Erde – der Fläche, auf der das gleiche Erdanziehungspotential herrscht – nur indirekt erschlossen werden. Ausgangswert für die Berechnungen bildet die Erdanziehung an der Oberfläche der Ozeane. Um das Geoid im Bereich der Kontinente zu berechnen, werden die relativen Abweichungen der Satellitenumlaufbahnen von der Ideallinie herangezogen und unter Berücksichtigung der tatsächlichen Höhe über Meer des überflogenen Orts aufwändig umgerechnet. Die verfahrensabhängigen Unsicherheiten sind dabei gross. Die geringe geografische Auflösung von ca. 100 Kilometern bringt zusätzliche Unschärfe in die Resultate.

Die Bestimmung des Geoids mit Hilfe von Atomuhren basiert auf Einsteins allgemeiner Relativitätstheorie und wird seit bald dreissig Jahren theoretisch diskutiert. Die Idee ist, dass Uhren, die sich in verschiedenen Distanzen zu einem massiven Körper und dessen Gravitationsfeld befinden, unterschiedlich schnell ticken. Je näher die Uhr beim Körper ist, desto langsamer läuft sie. Der Gangunterschied der beiden Uhren ist allerdings so gering, dass es bislang nicht möglich gewesen ist, die postulierte Zeitdifferenz tatsächlich zu messen. «Die ultrapräzisen Atomuhren der neusten Generation können die Zeitdifferenz zweier dreissig Zentimeter übereinander positionierter Uhren effektiv messen», erläutert Bondarescu und fügt an: «Damit rückt die Vermessung des Geoids der Erde in greifbare Nähe.»

Verlauf tektonischer Platten kartieren

Gemäss Bondarescu wird für die Bestimmung des Geoids eine ultrapräzise Atomuhr auf Meereshöhe platziert, d.h. auf der exakten Höhe des Geoids. Eine zweite solche Atomuhr wird an einen beliebigen Punkt auf dem Festland gebracht und mit der ersten Uhr über ein Glasfaserkabel synchronisiert. Die zweite Uhr wird langsamer oder schneller laufen – je nachdem, ob sie sich unter oder über dem Geoid befindet. Anhand der exakten Höhe über Meer des Messpunktes und der festgestellten Gangunterschiede sind Geophysiker anschliessend in der Lage, Aussagen über die Beschaffenheit des Untergrundes zu machen. Auf diese Weise kann der Verlauf tektonischer Platten, unterirdischer Wasservorkommen oder Erzlagerstätten kartiert werden.

Kartierungen bis in grosse Tiefen möglich

Kartierungen sind grundsätzlich bis in sehr grosse Tiefen möglich, vorausgesetzt die zu messende Struktur im Erdinnern und ihr Dichteunterschied zum Umgebungsmaterial sind ausreichend gross. Wie die Wissenschaftler numerisch aufzeigen, kann mittels ultrapräziser Atomuhren eine Struktur mit einer Ausdehnung von nur 1,5 Kilometern Durchmesser und einer geringfügigen Dichteanomalie von zwanzig Prozent in einer Tiefe von zwei Kilometern detekiert werden.

Zurzeit funktionieren ultrapräzise Atomuhren nur in Labors, d.h. sie sind nicht transportierbar und können entsprechend nicht für Messungen im Feld eingesetzt werden. Doch dies wird sich in den nächsten Jahren ändern: Bereits heute arbeiten verschiedene Unternehmen und Forschungsinstitute, darunter auch das in Neuchâtel ansässige Centre Suisse d’Electronique et de Microtechnique CSEM, an der Entwicklung von portablen ultrapräzisen Atomuhren. «Frühestens 2022 wird eine solch ultrapräzise portable Atomuhr an Bord eines ESA-Satelliten ins All fliegen», sagt Prof. Philippe Jetzer, Schweizer Delegierter der STE-Quest-Satellitenmission, deren Ziel es ist, die allgemeine Relativitätstheorie sehr genau zu prüfen. Bereits 2014 oder 2015 soll das «Atomic Clock Ensemble in Space ACES» zur Internationalen Raumstation ISS gebracht werden. ACES ist ein erster Prototyp, der allerdings noch nicht die Präzision von STE-QUEST hat.

Literatur:
Ruxandra Bondarescu, Mihai Bondarescu, György Hetényi, Lapo Boschi, Philippe Jetzer, Jayashree Balakrishna. Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophysical Journal International. 24 August, 2012. DOI: 10.1111/j.1365-246X.2012.05636.x
Kontakt:
Dr. Ruxandra Bondarescu (Anfragen nur in englischer Sprache)
Institut für Theoretische Physik
Universität Zürich
Tel. +41 44 635 58 04
E-Mail: ruxandra@physik.uzh.ch
Prof. Philippe Jetzer
Universität Zürich
Institut für Theoretische Physik
Tel. +41 44 63 55819
E-Mail: jetzer@physik.uzh.ch

Nathalie Huber | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht VLT auf der Suche nach Planeten im Sternsystem Alpha Centauri
10.01.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungsnachrichten

Mit solaren Gebäudehüllen Architektur gestalten

16.01.2017 | Architektur Bauwesen

Herzforschung - Neue Katheterklappe in Tübingen entwickelt

16.01.2017 | Medizintechnik