Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomkern mit Heiligenschein: Wissenschaftler vermessen erstmals Ein-Neutron-Halo mit Lasern

16.02.2009
Atomkern von Beryllium ist mit Heiligenschein dreimal so groß wie normal - Veröffentlichung in Physical Review Letters

Atomkerne sind normalerweise kompakte Gebilde, die durch einen sehr scharfen Rand begrenzt werden. Dass es davon auch Ausnahmen gibt, wurde vor rund 25 Jahren erstmals im kalifornischen Berkeley entdeckt: Einige exotische Atomkerne besitzen Teilchen, die aus dem zentralen Verbund ausscheren und eine Wolke bilden.

Die legt sich wie ein Heiligenschein oder "Halo" um den Rumpfkern herum. Ein solcher Halo findet sich beispielsweise bei Beryllium-11, einem speziellen Isotop des Metalls Beryllium. In diesem Fall wird der Halo von einem einzelnen Neutron gebildet. Wissenschaftlern am Institut für Kernchemie der Johannes Gutenberg-Universität Mainz ist es nun erstmals gelungen, diesen Ein-Neutron-Halo mit Hilfe eines Lasers präzise zu vermessen und die Ausdehnung des Schleiers festzustellen.

Von der Erforschung der Neutronen-Halos erhofft sich die Wissenschaft weitere Erkenntnisse über die Kernbindungskräfte, die im Innern der Atome wirken - auch vor dem Hintergrund, dass die Entfernung der Halo-Neutronen vom zentralen Atomkern mit den Vorstellungen der klassischen Kernphysik nicht vereinbar ist.

"Intuitiv stellen wir uns unter einem Atomkern eine kompakte Kugel vor, die aus positiv geladenen Protonen und ungeladenen Neutronen besteht", erläutert Dr. Wilfried Nörtershäuser vom Institut für Kernchemie. "Tatsächlich wissen wir aber seit den 1980er Jahren, dass die Atomkerne einiger neutronenreicher Isotope der leichtesten Elemente Lithium, Helium und Beryllium dieser Vorstellung völlig widersprechen." Diese Isotope bestehen aus einem kompakten Rumpfkern und einer Wolke aus verdünnter Kernmaterie - Heiligenschein oder Halo genannt. Ein Halo besteht meistens aus Neutronen, die extrem schwach an den Rumpfkern gebunden sind. "In der Regel mit nur etwa einem Zehntel der gewöhnlichen Bindungsenergie eines Neutrons im Kern", so Nörtershäuser.

Die Entdeckung dieser exotischen Atomkerne schuf ein neues Forschungsgebiet, das auch Nörtershäuser als Leiter einer Helmholtz-Hochschul-Nachwuchsgruppe seit 2005 an der Uni Mainz und dem GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt bearbeitet. Messungen an Halo-Kernen sind ausgesprochen schwierig, da sie nur in kleinen Mengen künstlich erzeugt werden können. Hinzu kommt, dass die erzeugten Kerne innerhalb weniger Sekunden, meist sogar von Millisekunden wieder zerfallen.

Der Arbeitsgruppe um Nörtershäuser ist es jetzt erstmals gelungen, den Kernladungsradius des Halo-Kerns von Beryllium-11 zu messen. Dieser Kern besteht aus einem Rumpfkern aus 4 Protonen und 6 Neutronen und einem schwach gebundenen Neutron, das den Halo bildet. Für diese laserspektroskopische Präzisionsmessung setzten die Wissenschaftler eine Methode ein, die bereits vor 30 Jahren an der Universität Mainz entwickelt wurde, kombinierten sie aber erstmals mit einer der modernsten Methoden zur präzisen Frequenzmessung von Lasern, indem sie einen Frequenzkamm einsetzten. Dies allein war aber noch nicht ausreichend. Erst durch die Erweiterung der Methode mit dem Einsatz eines weiteren Lasersystems konnte die erforderliche Genauigkeit erreicht werden. Die Technik wurde dann an der "Fabrik" für radioaktive Ionenstrahlen (ISOLDE) am Kernforschungszentrum CERN in Genf auf die Beryllium-Isotope angewandt. Das Fachjournal Physical Review Letters hat die Arbeiten in seiner jüngsten Ausgabe vom 13. Februar veröffentlicht.

Wie die Messungen ergaben, beträgt der mittlere Abstand des Halo-Neutrons von dem Rumpfkern 7 Femtometer. Das Halo-Neutron ist damit etwa dreimal so weit vom Rumpfkern entfernt wie das äußerste Proton, denn der Rumpfkern selbst hat einen Radius von nur 2,5 Femtometer. "Dies ist ein eindrucksvoller direkter Beweis des Halo-Charakters dieses Isotops. Besonders interessant ist dabei, dass das Halo-Neutron somit viel weiter von den anderen Nukleonen entfernt ist, als es die Reichweite der starken Kernkraft im klassischen Bild überhaupt zulassen dürfte", erklärt Nörtershäuser. Die starke Wechselwirkung, die den Atomkern zusammenhält, reicht lediglich 2 bis 3 Femtometer weit. Das Rätsel, weshalb sich das Halo-Neutron so weit vom Rumpfkern entfernen kann, lässt sich nur mit den Vorstellungen der Quantenmechanik lösen: Das Neutron muss demnach durch eine sogenannte Wellenfunktion beschrieben werden, welche aufgrund der geringen Bindungsenergie nur sehr langsam nach außen hin abfällt. Demnach kann das Neutron mit relativ hoher Wahrscheinlichkeit in klassisch verbotene Bereiche vordringen und den ausgedehnten "Heiligenschein" verursachen.

Die Arbeiten wurden von der Helmholtz-Gemeinschaft und der GSI Darmstadt sowie vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Originalveröffentlichung:
W. Nörtershäuser, D. Tiedemann, M. Žáková, Z. Andjelkovic, K. Blaum, M. L. Bissell, R. Cazan, G. W. F. Drake, Ch. Geppert, M. Kowalska, J. Krämer, A. Krieger, R. Neugart, R. Sánchez, F. Schmidt-Kaler, Z.-C. Yan, D. T. Yordanov, C. Zimmermann
Nuclear Charge Radii of 7,9,10Be and the One-Neutron Halo Nucleus 11Be
Physical Review Letters (Vol.102, No.6), 13. Februar 2009
Kontakt und Informationen:
Dr. Wilfried Nörtershäuser
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-25881
Fax 06131 39-27039
E-Mail: noerters@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kernchemie.uni-mainz.de/
http://www.uni-mainz.de/
http://www.uni-mainz.de/FB/Chemie/AK-Noertershaeuser/de/experiments/betina

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics