Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomkern mit Heiligenschein: Wissenschaftler vermessen erstmals Ein-Neutron-Halo mit Lasern

16.02.2009
Atomkern von Beryllium ist mit Heiligenschein dreimal so groß wie normal - Veröffentlichung in Physical Review Letters

Atomkerne sind normalerweise kompakte Gebilde, die durch einen sehr scharfen Rand begrenzt werden. Dass es davon auch Ausnahmen gibt, wurde vor rund 25 Jahren erstmals im kalifornischen Berkeley entdeckt: Einige exotische Atomkerne besitzen Teilchen, die aus dem zentralen Verbund ausscheren und eine Wolke bilden.

Die legt sich wie ein Heiligenschein oder "Halo" um den Rumpfkern herum. Ein solcher Halo findet sich beispielsweise bei Beryllium-11, einem speziellen Isotop des Metalls Beryllium. In diesem Fall wird der Halo von einem einzelnen Neutron gebildet. Wissenschaftlern am Institut für Kernchemie der Johannes Gutenberg-Universität Mainz ist es nun erstmals gelungen, diesen Ein-Neutron-Halo mit Hilfe eines Lasers präzise zu vermessen und die Ausdehnung des Schleiers festzustellen.

Von der Erforschung der Neutronen-Halos erhofft sich die Wissenschaft weitere Erkenntnisse über die Kernbindungskräfte, die im Innern der Atome wirken - auch vor dem Hintergrund, dass die Entfernung der Halo-Neutronen vom zentralen Atomkern mit den Vorstellungen der klassischen Kernphysik nicht vereinbar ist.

"Intuitiv stellen wir uns unter einem Atomkern eine kompakte Kugel vor, die aus positiv geladenen Protonen und ungeladenen Neutronen besteht", erläutert Dr. Wilfried Nörtershäuser vom Institut für Kernchemie. "Tatsächlich wissen wir aber seit den 1980er Jahren, dass die Atomkerne einiger neutronenreicher Isotope der leichtesten Elemente Lithium, Helium und Beryllium dieser Vorstellung völlig widersprechen." Diese Isotope bestehen aus einem kompakten Rumpfkern und einer Wolke aus verdünnter Kernmaterie - Heiligenschein oder Halo genannt. Ein Halo besteht meistens aus Neutronen, die extrem schwach an den Rumpfkern gebunden sind. "In der Regel mit nur etwa einem Zehntel der gewöhnlichen Bindungsenergie eines Neutrons im Kern", so Nörtershäuser.

Die Entdeckung dieser exotischen Atomkerne schuf ein neues Forschungsgebiet, das auch Nörtershäuser als Leiter einer Helmholtz-Hochschul-Nachwuchsgruppe seit 2005 an der Uni Mainz und dem GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt bearbeitet. Messungen an Halo-Kernen sind ausgesprochen schwierig, da sie nur in kleinen Mengen künstlich erzeugt werden können. Hinzu kommt, dass die erzeugten Kerne innerhalb weniger Sekunden, meist sogar von Millisekunden wieder zerfallen.

Der Arbeitsgruppe um Nörtershäuser ist es jetzt erstmals gelungen, den Kernladungsradius des Halo-Kerns von Beryllium-11 zu messen. Dieser Kern besteht aus einem Rumpfkern aus 4 Protonen und 6 Neutronen und einem schwach gebundenen Neutron, das den Halo bildet. Für diese laserspektroskopische Präzisionsmessung setzten die Wissenschaftler eine Methode ein, die bereits vor 30 Jahren an der Universität Mainz entwickelt wurde, kombinierten sie aber erstmals mit einer der modernsten Methoden zur präzisen Frequenzmessung von Lasern, indem sie einen Frequenzkamm einsetzten. Dies allein war aber noch nicht ausreichend. Erst durch die Erweiterung der Methode mit dem Einsatz eines weiteren Lasersystems konnte die erforderliche Genauigkeit erreicht werden. Die Technik wurde dann an der "Fabrik" für radioaktive Ionenstrahlen (ISOLDE) am Kernforschungszentrum CERN in Genf auf die Beryllium-Isotope angewandt. Das Fachjournal Physical Review Letters hat die Arbeiten in seiner jüngsten Ausgabe vom 13. Februar veröffentlicht.

Wie die Messungen ergaben, beträgt der mittlere Abstand des Halo-Neutrons von dem Rumpfkern 7 Femtometer. Das Halo-Neutron ist damit etwa dreimal so weit vom Rumpfkern entfernt wie das äußerste Proton, denn der Rumpfkern selbst hat einen Radius von nur 2,5 Femtometer. "Dies ist ein eindrucksvoller direkter Beweis des Halo-Charakters dieses Isotops. Besonders interessant ist dabei, dass das Halo-Neutron somit viel weiter von den anderen Nukleonen entfernt ist, als es die Reichweite der starken Kernkraft im klassischen Bild überhaupt zulassen dürfte", erklärt Nörtershäuser. Die starke Wechselwirkung, die den Atomkern zusammenhält, reicht lediglich 2 bis 3 Femtometer weit. Das Rätsel, weshalb sich das Halo-Neutron so weit vom Rumpfkern entfernen kann, lässt sich nur mit den Vorstellungen der Quantenmechanik lösen: Das Neutron muss demnach durch eine sogenannte Wellenfunktion beschrieben werden, welche aufgrund der geringen Bindungsenergie nur sehr langsam nach außen hin abfällt. Demnach kann das Neutron mit relativ hoher Wahrscheinlichkeit in klassisch verbotene Bereiche vordringen und den ausgedehnten "Heiligenschein" verursachen.

Die Arbeiten wurden von der Helmholtz-Gemeinschaft und der GSI Darmstadt sowie vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Originalveröffentlichung:
W. Nörtershäuser, D. Tiedemann, M. Žáková, Z. Andjelkovic, K. Blaum, M. L. Bissell, R. Cazan, G. W. F. Drake, Ch. Geppert, M. Kowalska, J. Krämer, A. Krieger, R. Neugart, R. Sánchez, F. Schmidt-Kaler, Z.-C. Yan, D. T. Yordanov, C. Zimmermann
Nuclear Charge Radii of 7,9,10Be and the One-Neutron Halo Nucleus 11Be
Physical Review Letters (Vol.102, No.6), 13. Februar 2009
Kontakt und Informationen:
Dr. Wilfried Nörtershäuser
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-25881
Fax 06131 39-27039
E-Mail: noerters@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kernchemie.uni-mainz.de/
http://www.uni-mainz.de/
http://www.uni-mainz.de/FB/Chemie/AK-Noertershaeuser/de/experiments/betina

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie