Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Atome zusammenhält – Physiker enthüllen Symmetrie chemischer Bindungen. „Science“-Artikel

27.04.2012
Physikern der Universität Regensburg gelingt die quantitative Messung der Symmetrie von Bindungskräften auf atomarer Ebene mit höchster Präzision.
Das Messverfahren lässt sich für weitere Untersuchungen der Nanowelt gezielt modifizieren. Auf dieser Grundlage kann nun von der Bindungsenergie auf die chemische Identität eines zu untersuchenden Atoms geschlossen werden. Ein „Atlas“ der Kräftewirkungen im atomaren Bereich ist für die Zukunft denkbar.

Chemische Bindungen sichern den Zusammenhalt zwischen den Atomen in Molekülen und festen Körpern. Die chemischen Bindungskräfte bestimmen dabei den Aufbau der Moleküle und die Anordnung der einzelnen Atome zueinander (Winkelabhängigkeit). Beispiele sind die Struktur von Salz- und Zuckerkörnern oder die Form der Eisblumen, die im Winter mühsam vom Autofenster gekratzt werden müssen.
Die Winkelabhängigkeit der einzelnen Atome eines Moleküls ist schon seit längerer Zeit bekannt, wurde aber bislang noch nicht mit hoher Präzision im Experiment untersucht. Dies wäre jedoch von fundamentaler Bedeutung, um die allgemeinen Eigenschaften und das Verhalten chemischer Bindungen besser verstehen zu können.

Forschern der Universität Regensburg ist jetzt in diesem Zusammenhang ein bedeutender Durchbruch gelungen. Dipl.-Physiker Joachim Welker und Prof. Dr. Franz J. Giessibl vom Institut für Experimentelle und Angewandte Physik konnten die Symmetrie von Bindungskräften auf atomarer Ebene quantitativ messen. Die Wissenschaftler analysierten dazu die Winkelabhängigkeit der chemischen Bindungskräfte zwischen einem Kohlenstoffmonoxid-Molekül, das auf einer Kupferoberfläche anhaftete, und der metallenen Spitze einer Kombination aus Rasterkraftmikroskop und Rastertunnelmikroskop.

Oben: Drei kubusförmige Salzkörner, von denen das linke auf einer Seitenfläche liegt, das mittlere auf einer Kante steht und das rechte auf der Spitze steht. Die würfelförmige Struktur von Kochsalz kommt von der Symmetrie der Bindungen, die Natrium und Chlor zusammenhalten. Unten: Experimentell gemessene Stärken chemischer Bindungen zwischen einem Wolframatom (kubische Bindungssymmetrie) und einem Kohlenmonoxidmolekül, bei denen das Wolframatom genau so orientiert ist wie die Salzkörner darüber. Das Wolframatom weist nur etwa ein Millionstel des Durchmessers eines Salzkorns auf.
Foto: Universität Regensburg

„Mit unseren Untersuchungen haben wir die atomare Symmetrie chemischer Verbindungen zwischen einzelnen Atomen eines Moleküls mit höchster Präzision bestimmt“, erklärt Giessibl. Und mehr noch: Die Regensburger Physiker sind auch in der Lage, die Sondenspitze ihres Mikroskops für ähnliche Untersuchungen systematisch zu modifizieren.

Der Umstand, dass die „Bindungsärmchen“ des vordersten Atoms der Mikroskopspitze gezielt ausgerichtet werden können, macht nun weitere Untersuchungen der Nanowelt möglich, die bis dahin nicht denkbar waren.

„Möglich wäre sogar, dass wir auf dieser Grundlage einen „Atlas“ der Kräftewirkungen im atomaren Bereich erarbeiten können“, bemerkt Welker. So sind die Regensburger Forscher derzeit dabei, ihre Untersuchungen auf andere Materialkombinationen auszudehnen. Welker dazu: „Wir können jetzt von der Bindungsenergie auf die chemische Identität eines zu untersuchenden Atoms schließen. Nach dem Motto: Wenn diese Kraft vorherrscht, dann muss es beispielsweise Wolfram oder Kupfer sein.“

Die Ergebnisse der Regensburger Forscher sind in der renommierten Fachzeitschrift „Science“ veröffentlicht worden (DOI: 10.1126/science.1219850).

Ansprechpartner für Medienvertreter:
Prof. Dr. Franz J. Giessibl
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2105/2106
Franz.Giessibl@physik.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten