Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atome und ihr Quanten-Spiegelbild

05.04.2011
Weiterführung eines Gedankenexperiments von Einstein – Physiker erzeugen Quanten-Überlagerungszustände

Wer vor einem Spiegel steht, hat sicher kein Problem, sich selbst von seinem Spiegelbild zu unterscheiden. Auf unsere Bewegungsmöglichkeiten hat der Spiegel keinen Einfluss. Bei quantenphysikalischen Teilchen ist das komplizierter.


Kommt das Licht direkt vom Atom oder von seinem Spiegelbild? Ein Spiegel erzeugt eine quantenmechanische Überlagerung. Copyright: TU Wien

In einer aufsehenerregenden Forschungsarbeit in den Laboren der Universität Heidelberg gelang es Heidelberger Physikern gemeinsam mit Forschern der Technischen Universität München sowie der Technischen Universität Wien, ein Gedankenexperiment von Einstein im Labor weiterzuführen und den Unterschied zwischen einzelnen Teilchen und ihren Spiegelbildern verschwimmen zu lassen. Die Ergebnisse des Experimentes wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Wenn ein Atom spontan in eine bestimmte Richtung ein Lichtteilchen aussendet, erfährt es einen Rückstoß in die Gegenrichtung. Misst man das Lichtteilchen, kennt man daher auch den Bewegungszustand des Atoms. Das Forscherteam platzierte Atome wenige Millionstel Meter vor einem vergoldeten Spiegel – in diesem Fall gibt es für ein Lichtteilchen, das zum Beobachter gelangt, zwei mögliche Wege: Es kann direkt vom Atom zum Beobachter gekommen sein, oder es wurde in die entgegengesetzte Richtung ausgesandt, ist auf den Spiegel getroffen und dann zum Beobachter gelangt. Wenn man zwischen diesen beiden Fällen nicht unterscheiden kann, befindet sich das Atom in einer Überlagerung beider Wege.

„Bei einem sehr kleinen Abstand zwischen Atom und Spiegel kann zwischen den beiden Möglichkeiten ganz prinzipiell nicht mehr unterschieden werden“, erklärt Jiri Tomkovic, Doktorand in der Arbeitsgruppe von Prof. Dr. Markus Oberthaler an der Universität Heidelberg. Ursprungsteilchen und Spiegelbild sind physikalisch nicht mehr voneinander zu trennen. Das Atom bewegt sich gleichzeitig auf den Spiegel zu und vom Spiegel weg. Was paradox klingt und für makroskopische Teilchen unmöglich ist, kennt man in der Quantenphysik schon lange.

„Diese Unsicherheit über den Bewegungszustand des Atoms bedeutet nicht, dass wir nicht genau genug gemessen haben“, betont Prof. Dr. Jörg Schmiedmayer von der TU Wien. „Das ist eine grundlegende Eigenschaft der Quantenphysik: Das Teilchen befindet sich in beiden Bewegungszuständen gleichzeitig, es ist in einem Überlagerungszustand.“ Im Experiment werden die Bewegungszustände, die das Atom gleichzeitig einnimmt – hin zum Spiegel und weg vom Spiegel – durch sogenannte Bragg-Streuung an einem Gitter aus Laserlicht wieder kombiniert. Dadurch lässt sich beweisen, dass sich das Atom tatsächlich in einem Überlagerungszustand befand.

Dies erinnert an das berühmte Doppelspaltexperiment, in dem ein Teilchen auf eine Platte mit zwei Öffnungen geschossen wird – und aufgrund seiner quantenmechanischen Welleneigenschaften durch beide Öffnungen gleichzeitig tritt. Schon Einstein machte sich darüber Gedanken, dass das nur dann möglich ist, wenn durch keine mögliche Messung entschieden werden kann, welchen Weg das Teilchen genommen hat, auch nicht durch Vermessung von winzigen Bewegungen der Doppelspalt-Platte. Sobald durch irgendein Experiment auch nur theoretisch feststellbar wäre, für welchen Weg sich das Teilchen entschieden hat, ist es vorbei mit der Quanten-Überlagerung. „In unserem Fall spielen die Lichtteilchen eine ähnliche Rolle wie ein Doppelspalt“, meint Prof. Oberthaler von der Universität Heidelberg. „Wenn das Licht prinzipiell darüber Auskunft geben kann, in welche Richtung sich das Atom bewegt, dann ist auch der Zustand des Atoms festgelegt. Nur wenn das grundsätzlich unentscheidbar ist, befindet sich das Atom in einem Überlagerungszustand, der beide Möglichkeiten vereint.“ Und genau diese Unentscheidbarkeit wird durch den Spiegel gewährleistet.

Auszutesten, unter welchen Bedingungen solche Quanten-Überlagerungen zu erkennen sind, ist eine wichtige Forschungsfrage in der Quantenphysik: Nur so lassen sich diese Effekte auch gezielt nutzen. Die Idee für dieses Experiment wurde von Jörg Schmiedmayer und Markus Oberthaler bereits vor einigen Jahren entwickelt. „Das Faszinierende daran ist“, so die Forscher, „die Möglichkeit, einen Überlagerungszustand einfach durch die Anwesenheit eines Spiegels zu erzeugen, ganz ohne Eingriff durch äußere Felder.“ Das Teilchen und sein Spiegelbild geraten ganz von selbst in eine quantenphysikalische Beziehung zueinander – ganz ohne aufwendiges Zutun der Wissenschaftler.

Informationen im Internet können unter
http://www.kip.uni-heidelberg.de/matterwaveoptics
abgerufen werden.
Originalveröffentlichung:
J. Tomkoviè, M. Schreiber, J. Welte, M. Kiffner, J. Schmiedmayer & M.K. Oberthaler: Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave. Nature Physics. Published online: 03 April 2011

doi: 10.1038/nphys1961

Kontakt:

Prof. Dr. Markus Oberthaler
Universität Heidelberg
Kirchhoff-Institut für Physik
Telefon +49 6221 54-5171
markus.oberthaler@kip.uni-heidelberg.de
Prof. Dr. Jörg Schmiedmayer
Technische Universität Wien
Atominstitut
Telefon +43 1 58801 14801
hannes-joerg.schmiedmayer@tuwien.ac.at
Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode zur Charakterisierung von Graphen
30.05.2017 | Universität Basel

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode zur Charakterisierung von Graphen

Wissenschaftler haben eine neue Methode entwickelt, um die Eigenschaften von Graphen ohne das Anlegen störender elektrischer Kontakte zu charakterisieren. Damit lassen sich gleichzeitig der Widerstand und die Quantenkapazität von Graphen sowie von anderen zweidimensionalen Materialien untersuchen. Dies berichten Forscher vom Swiss Nanoscience Institute und Departement Physik der Universität Basel im Wissenschaftsjournal «Physical Review Applied».

Graphen besteht aus einer einzigen Lage von Kohlenstoffatomen. Es ist transparent, härter als Diamant, stärker als Stahl, dabei aber flexibel und ein deutlich...

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftsforum Chemie 2017

30.05.2017 | Veranstaltungen

Erfolgsfaktor Digitalisierung

30.05.2017 | Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode zur Charakterisierung von Graphen

30.05.2017 | Physik Astronomie

Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn

30.05.2017 | Biowissenschaften Chemie

Nano-U-Boot mit Selbstzerstörungs-Mechanismus

30.05.2017 | Biowissenschaften Chemie