Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atome und ihr Quanten-Spiegelbild

05.04.2011
Weiterführung eines Gedankenexperiments von Einstein – Physiker erzeugen Quanten-Überlagerungszustände

Wer vor einem Spiegel steht, hat sicher kein Problem, sich selbst von seinem Spiegelbild zu unterscheiden. Auf unsere Bewegungsmöglichkeiten hat der Spiegel keinen Einfluss. Bei quantenphysikalischen Teilchen ist das komplizierter.


Kommt das Licht direkt vom Atom oder von seinem Spiegelbild? Ein Spiegel erzeugt eine quantenmechanische Überlagerung. Copyright: TU Wien

In einer aufsehenerregenden Forschungsarbeit in den Laboren der Universität Heidelberg gelang es Heidelberger Physikern gemeinsam mit Forschern der Technischen Universität München sowie der Technischen Universität Wien, ein Gedankenexperiment von Einstein im Labor weiterzuführen und den Unterschied zwischen einzelnen Teilchen und ihren Spiegelbildern verschwimmen zu lassen. Die Ergebnisse des Experimentes wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Wenn ein Atom spontan in eine bestimmte Richtung ein Lichtteilchen aussendet, erfährt es einen Rückstoß in die Gegenrichtung. Misst man das Lichtteilchen, kennt man daher auch den Bewegungszustand des Atoms. Das Forscherteam platzierte Atome wenige Millionstel Meter vor einem vergoldeten Spiegel – in diesem Fall gibt es für ein Lichtteilchen, das zum Beobachter gelangt, zwei mögliche Wege: Es kann direkt vom Atom zum Beobachter gekommen sein, oder es wurde in die entgegengesetzte Richtung ausgesandt, ist auf den Spiegel getroffen und dann zum Beobachter gelangt. Wenn man zwischen diesen beiden Fällen nicht unterscheiden kann, befindet sich das Atom in einer Überlagerung beider Wege.

„Bei einem sehr kleinen Abstand zwischen Atom und Spiegel kann zwischen den beiden Möglichkeiten ganz prinzipiell nicht mehr unterschieden werden“, erklärt Jiri Tomkovic, Doktorand in der Arbeitsgruppe von Prof. Dr. Markus Oberthaler an der Universität Heidelberg. Ursprungsteilchen und Spiegelbild sind physikalisch nicht mehr voneinander zu trennen. Das Atom bewegt sich gleichzeitig auf den Spiegel zu und vom Spiegel weg. Was paradox klingt und für makroskopische Teilchen unmöglich ist, kennt man in der Quantenphysik schon lange.

„Diese Unsicherheit über den Bewegungszustand des Atoms bedeutet nicht, dass wir nicht genau genug gemessen haben“, betont Prof. Dr. Jörg Schmiedmayer von der TU Wien. „Das ist eine grundlegende Eigenschaft der Quantenphysik: Das Teilchen befindet sich in beiden Bewegungszuständen gleichzeitig, es ist in einem Überlagerungszustand.“ Im Experiment werden die Bewegungszustände, die das Atom gleichzeitig einnimmt – hin zum Spiegel und weg vom Spiegel – durch sogenannte Bragg-Streuung an einem Gitter aus Laserlicht wieder kombiniert. Dadurch lässt sich beweisen, dass sich das Atom tatsächlich in einem Überlagerungszustand befand.

Dies erinnert an das berühmte Doppelspaltexperiment, in dem ein Teilchen auf eine Platte mit zwei Öffnungen geschossen wird – und aufgrund seiner quantenmechanischen Welleneigenschaften durch beide Öffnungen gleichzeitig tritt. Schon Einstein machte sich darüber Gedanken, dass das nur dann möglich ist, wenn durch keine mögliche Messung entschieden werden kann, welchen Weg das Teilchen genommen hat, auch nicht durch Vermessung von winzigen Bewegungen der Doppelspalt-Platte. Sobald durch irgendein Experiment auch nur theoretisch feststellbar wäre, für welchen Weg sich das Teilchen entschieden hat, ist es vorbei mit der Quanten-Überlagerung. „In unserem Fall spielen die Lichtteilchen eine ähnliche Rolle wie ein Doppelspalt“, meint Prof. Oberthaler von der Universität Heidelberg. „Wenn das Licht prinzipiell darüber Auskunft geben kann, in welche Richtung sich das Atom bewegt, dann ist auch der Zustand des Atoms festgelegt. Nur wenn das grundsätzlich unentscheidbar ist, befindet sich das Atom in einem Überlagerungszustand, der beide Möglichkeiten vereint.“ Und genau diese Unentscheidbarkeit wird durch den Spiegel gewährleistet.

Auszutesten, unter welchen Bedingungen solche Quanten-Überlagerungen zu erkennen sind, ist eine wichtige Forschungsfrage in der Quantenphysik: Nur so lassen sich diese Effekte auch gezielt nutzen. Die Idee für dieses Experiment wurde von Jörg Schmiedmayer und Markus Oberthaler bereits vor einigen Jahren entwickelt. „Das Faszinierende daran ist“, so die Forscher, „die Möglichkeit, einen Überlagerungszustand einfach durch die Anwesenheit eines Spiegels zu erzeugen, ganz ohne Eingriff durch äußere Felder.“ Das Teilchen und sein Spiegelbild geraten ganz von selbst in eine quantenphysikalische Beziehung zueinander – ganz ohne aufwendiges Zutun der Wissenschaftler.

Informationen im Internet können unter
http://www.kip.uni-heidelberg.de/matterwaveoptics
abgerufen werden.
Originalveröffentlichung:
J. Tomkoviè, M. Schreiber, J. Welte, M. Kiffner, J. Schmiedmayer & M.K. Oberthaler: Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave. Nature Physics. Published online: 03 April 2011

doi: 10.1038/nphys1961

Kontakt:

Prof. Dr. Markus Oberthaler
Universität Heidelberg
Kirchhoff-Institut für Physik
Telefon +49 6221 54-5171
markus.oberthaler@kip.uni-heidelberg.de
Prof. Dr. Jörg Schmiedmayer
Technische Universität Wien
Atominstitut
Telefon +43 1 58801 14801
hannes-joerg.schmiedmayer@tuwien.ac.at
Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie