Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein atomarer Schalter

23.09.2009
Erstmals haben Forscher des Heidelberger Max-Planck-Instituts für Kernphysik am Freie-Elektronen-Laser FLASH (Forschungszentrum DESY) in Hamburg eine Art Schalter für einen korrelierten atomaren Prozess realisiert.

Die Wahrscheinlichkeit, mit der Doppelionisation von Lithiumatomen bei Bestrahlung mit UV-Licht auftritt, konnte durch gezielte Manipulation eines der beteiligten atomaren Elektronenorbitale kontrolliert werden. Dabei wurde lediglich die räumliche Ausrichtung des Orbitals verändert.

Wie komplexe Systeme aus dem Zusammenspiel einfacher Bestandteile entstehen, gehört zu den fundamentalen Fragestellungen der Physik. Eine wesentliche Rolle spielt dabei die gegenseitige Beeinflussung der Teilchen, Korrelation genannt, die letztendlich dazu führt, dass das Ganze mehr ist als die einfache Summe seiner Teile. Schon das Dreikörperproblem zeigt die dabei auftretenden mathematischen Schwierigkeiten auf. Ein Ziel der modernen Atomphysik ist es, Mehrteilchenprozesse nicht nur besser zu verstehen, sondern auch kontrolliert zu manipulieren. Dies ist Forschern der Gruppe um Alexander Dorn am Heidelberger Max-Planck-Institut für Kernphysik am Beispiel der Doppelionisation von Lithium durch Ultraviolett-Photonen gelungen, indem sie die räumliche Struktur des Atoms gezielt präparierten.

Ermöglicht wurden die Messungen durch eine bisher einmalige Kombination von drei hochmodernen Techniken: Die Photonen einer Energie von 85 eV, welche die Reaktion auslösen, lieferte der neue Freie-Elektronen-Laser in Hamburg (FLASH, Forschungszentrum DESY). Diese treffen auf ultrakalte Lithiumatome, die in einer magneto-optischen Falle auf sehr tiefe Temperaturen (0,1 Grad über dem absoluten Nullpunkt) gekühlt, durch Laser-Lichtkräfte gefangen gehalten werden. Dort lassen sie sich durch weitere Laser speziell präparieren. Schließlich befindet sich diese Falle in einem sogenannten Reaktionsmikroskop, welches den simultanen und sehr effizienten Nachweis im Prinzip aller Reaktionsprodukte, der Elektronen und des Ions mit hoher Auflösung erlaubt.

Abbildung 1 zeigt als Beispiel die beobachtete Geschwindigkeitsverteilung des Elektrons nach Einfachionisation von Lithium durch UV-Photonen: Die verschiedenen ringförmigen Muster korrespondieren zur Ionisation aus der äußersten 2s-Schale (a), aus der 1s-Schale (b) sowie aus der 1s-Schale bei gleichzeitiger Anregung eines der verbliebenen Elektronen auf die 2p-Schale (c). Grundlage ist der von Einstein 1905 erstmals richtig gedeutete Photoeffekt, wo die gesamte Energie eines einzelnen Lichtquants (Photons) zunächst auf genau ein Elektron übertragen wird. Dieses kann aber einen Teil seiner Energie durch die gegenseitige elektrische Abstoßung (angedeutet durch die gestrichelte schräge Linie) auf ein weiteres Elektron übertragen und dieses wie im Fall (c) in einen gebundenen Zustand anregen - ein korrelierter Prozess. Auf genau die gleiche Weise kann dieses Elektron aber auch soviel Energie erhalten, dass es ebenfalls das Atom verlässt, also Doppelionisation auftritt.

Alexander Dorn und seine Kollegen haben nun das 2s-Elektron mit einem optischen Laser in ein 2p-Orbital angeregt, wobei dessen räumliche Ausrichtung gezielt präpariert werden kann (rote Keulen in Abbildung 2a). Im zweiten Schritt wurde dann durch Bestrahlung mit polarisierten UV-Laserpulsen ein Elektron aus der 1s-Schale freigesetzt. Wie schon aus der Messung für Einfachionisation (Abbildung 1) ersichtlich, wird das Elektron bevorzugt in Richtung des elektrischen Laserfeldes (E) emittiert (blaue Keulen in Abbildung 2a). Die Forscher haben nun die Wahl, das präparierte 2p-Orbital parallel oder senkrecht zum Laserfeld auszurichten, was die Wahrscheinlichkeit für Doppelionisation stark beeinflusst - bei paralleler Ausrichtung ist sie erhöht, im anderen Fall deutlich unterdrückt.

Dieser Effekt tritt ausschließlich bei sehr niedrigen Energien der emittierten Elektronen, das heißt nahe der energetischen Schwelle zur Doppelionisation auf; bei höheren Energien verschwindet er. Direkt an der Schwelle sind die beiden Elektronen vollständig korreliert, sie müssen ihre Energie und Winkel exakt abstimmen, um beide aus dem Potentialtopf des Ions zu entrinnen: am liebsten entkommen sie in exakt gegenüberliegenden Richtungen - was bei paralleler Ausrichtung bevorzugt funktioniert.

Dieses Pilotexperiment demonstriert, dass die korrelierte Zustandsänderung von mehreren Elektronen in gebundenen Systemen, hier bei der Doppelionisation von Atomen, mittels Laserpräparation vollständig kontrolliert und, bei geeignet gewählten Bedingungen, praktisch an- und abgeschaltet werden kann. Durch diese neuentwickelte Methode können nicht nur weitreichende Erkenntnisse über quantendynamische Elektronenkorrelation in atomaren Systemen gewonnen werden, sondern die Forscher erhoffen sich Rückschlüsse auf solche korrelierten Effekte in anderen Quantensystemen.

Kontakt:

PD Dr. Alexander Dorn
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
Tel: (+49)6221/516-513
Fax: (+49)6221/516-604
E-Mail: alexander.dorn@mpi-hd.mpg.de
Prof. Dr. Joachim Ullrich
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
Tel: (+49)6221/516-696
Fax: (+49)6221/516-604
E-Mail: joachim.ullrich@mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.103.103008
http://www.mpi-hd.mpg.de/ullrich/
http://www.cfel.mpg.de/page.php?id=38

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quanten-Boten kommunizieren doppelt so schnell
22.02.2018 | Österreichische Akademie der Wissenschaften

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics