Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein atomarer Schalter

23.09.2009
Erstmals haben Forscher des Heidelberger Max-Planck-Instituts für Kernphysik am Freie-Elektronen-Laser FLASH (Forschungszentrum DESY) in Hamburg eine Art Schalter für einen korrelierten atomaren Prozess realisiert.

Die Wahrscheinlichkeit, mit der Doppelionisation von Lithiumatomen bei Bestrahlung mit UV-Licht auftritt, konnte durch gezielte Manipulation eines der beteiligten atomaren Elektronenorbitale kontrolliert werden. Dabei wurde lediglich die räumliche Ausrichtung des Orbitals verändert.

Wie komplexe Systeme aus dem Zusammenspiel einfacher Bestandteile entstehen, gehört zu den fundamentalen Fragestellungen der Physik. Eine wesentliche Rolle spielt dabei die gegenseitige Beeinflussung der Teilchen, Korrelation genannt, die letztendlich dazu führt, dass das Ganze mehr ist als die einfache Summe seiner Teile. Schon das Dreikörperproblem zeigt die dabei auftretenden mathematischen Schwierigkeiten auf. Ein Ziel der modernen Atomphysik ist es, Mehrteilchenprozesse nicht nur besser zu verstehen, sondern auch kontrolliert zu manipulieren. Dies ist Forschern der Gruppe um Alexander Dorn am Heidelberger Max-Planck-Institut für Kernphysik am Beispiel der Doppelionisation von Lithium durch Ultraviolett-Photonen gelungen, indem sie die räumliche Struktur des Atoms gezielt präparierten.

Ermöglicht wurden die Messungen durch eine bisher einmalige Kombination von drei hochmodernen Techniken: Die Photonen einer Energie von 85 eV, welche die Reaktion auslösen, lieferte der neue Freie-Elektronen-Laser in Hamburg (FLASH, Forschungszentrum DESY). Diese treffen auf ultrakalte Lithiumatome, die in einer magneto-optischen Falle auf sehr tiefe Temperaturen (0,1 Grad über dem absoluten Nullpunkt) gekühlt, durch Laser-Lichtkräfte gefangen gehalten werden. Dort lassen sie sich durch weitere Laser speziell präparieren. Schließlich befindet sich diese Falle in einem sogenannten Reaktionsmikroskop, welches den simultanen und sehr effizienten Nachweis im Prinzip aller Reaktionsprodukte, der Elektronen und des Ions mit hoher Auflösung erlaubt.

Abbildung 1 zeigt als Beispiel die beobachtete Geschwindigkeitsverteilung des Elektrons nach Einfachionisation von Lithium durch UV-Photonen: Die verschiedenen ringförmigen Muster korrespondieren zur Ionisation aus der äußersten 2s-Schale (a), aus der 1s-Schale (b) sowie aus der 1s-Schale bei gleichzeitiger Anregung eines der verbliebenen Elektronen auf die 2p-Schale (c). Grundlage ist der von Einstein 1905 erstmals richtig gedeutete Photoeffekt, wo die gesamte Energie eines einzelnen Lichtquants (Photons) zunächst auf genau ein Elektron übertragen wird. Dieses kann aber einen Teil seiner Energie durch die gegenseitige elektrische Abstoßung (angedeutet durch die gestrichelte schräge Linie) auf ein weiteres Elektron übertragen und dieses wie im Fall (c) in einen gebundenen Zustand anregen - ein korrelierter Prozess. Auf genau die gleiche Weise kann dieses Elektron aber auch soviel Energie erhalten, dass es ebenfalls das Atom verlässt, also Doppelionisation auftritt.

Alexander Dorn und seine Kollegen haben nun das 2s-Elektron mit einem optischen Laser in ein 2p-Orbital angeregt, wobei dessen räumliche Ausrichtung gezielt präpariert werden kann (rote Keulen in Abbildung 2a). Im zweiten Schritt wurde dann durch Bestrahlung mit polarisierten UV-Laserpulsen ein Elektron aus der 1s-Schale freigesetzt. Wie schon aus der Messung für Einfachionisation (Abbildung 1) ersichtlich, wird das Elektron bevorzugt in Richtung des elektrischen Laserfeldes (E) emittiert (blaue Keulen in Abbildung 2a). Die Forscher haben nun die Wahl, das präparierte 2p-Orbital parallel oder senkrecht zum Laserfeld auszurichten, was die Wahrscheinlichkeit für Doppelionisation stark beeinflusst - bei paralleler Ausrichtung ist sie erhöht, im anderen Fall deutlich unterdrückt.

Dieser Effekt tritt ausschließlich bei sehr niedrigen Energien der emittierten Elektronen, das heißt nahe der energetischen Schwelle zur Doppelionisation auf; bei höheren Energien verschwindet er. Direkt an der Schwelle sind die beiden Elektronen vollständig korreliert, sie müssen ihre Energie und Winkel exakt abstimmen, um beide aus dem Potentialtopf des Ions zu entrinnen: am liebsten entkommen sie in exakt gegenüberliegenden Richtungen - was bei paralleler Ausrichtung bevorzugt funktioniert.

Dieses Pilotexperiment demonstriert, dass die korrelierte Zustandsänderung von mehreren Elektronen in gebundenen Systemen, hier bei der Doppelionisation von Atomen, mittels Laserpräparation vollständig kontrolliert und, bei geeignet gewählten Bedingungen, praktisch an- und abgeschaltet werden kann. Durch diese neuentwickelte Methode können nicht nur weitreichende Erkenntnisse über quantendynamische Elektronenkorrelation in atomaren Systemen gewonnen werden, sondern die Forscher erhoffen sich Rückschlüsse auf solche korrelierten Effekte in anderen Quantensystemen.

Kontakt:

PD Dr. Alexander Dorn
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
Tel: (+49)6221/516-513
Fax: (+49)6221/516-604
E-Mail: alexander.dorn@mpi-hd.mpg.de
Prof. Dr. Joachim Ullrich
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
Tel: (+49)6221/516-696
Fax: (+49)6221/516-604
E-Mail: joachim.ullrich@mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.103.103008
http://www.mpi-hd.mpg.de/ullrich/
http://www.cfel.mpg.de/page.php?id=38

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie